• Title/Summary/Keyword: 전동오차

Search Result 43, Processing Time 0.029 seconds

Analysis of Transmission Error for Stepping Motor Drive Timing Belt System (스테핑 모터 구동 타이밍벨트 시스템의 전동오차 해석)

  • Kim, Hyun-Soo;Wee, Hyuk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.649-657
    • /
    • 1992
  • Transmission error for a stepping motor-timing belt drive system is investigated experimentally and analytically. From FFT analysis of the experimental results, it is found that the transmission error consists of three periodic errors : (1) error by the stepping motor per one resolution angle theta.$_{m}$, (2) error by the pulley eccentricity per one revolution theta.$_{e}$, and (3) error by the meshing effect between the belt and the pulley teeth per one pitch revoltion theta.$_{p}$. In order to investigate the effects of some design parameters on the transmission error, the dynamic models of the stepping motor-timing belt drive system are derived by Bondgraph. According to the simulation results, as the belt total tension increases, theta.$_{m}$ and theta.$_{e}$ decrease due to the nonlinearity of the belt. In adition, the numerical and experimental results show that theta.$_{m}$ and theta.$_{e}$ of the loaded case are larger than those of the unloaded case. The analytical results are in good accordance with the experimental results.sults.s.sults.

The Compensation Method of Current Measurement Error for Vector-Controlled Inverter of 2-Phase Induction Motor (2상 유도전동기용 벡터제어 인버터에서의 전류측정 오차 보상 기법)

  • Lee, Ho-Jun;Yoon, Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.477-478
    • /
    • 2015
  • 2상 유도전동기용 벡터제어 인버터에서는 전류센서를 사용하여 a상 및 b상의 전류를 측정해야 한다. 그러나, 이 전류값을 마이크로컨트롤러의 A/D컨버터로 읽어 들이는 과정에서 전류 센서와 증폭회로로부터 발생하는 오프셋 오차와 변환이득 오차를 포함할 수 있다. 2상 유도전동기의 벡터제어 시스템이 이러한 오차들을 포함한다면 전동기의 출력토크에 리플이 발생한다. 본 논문에서는 이러한 전류측정 오차를 실시간으로 보상하여 전동기의 토크리플을 제거하는 방법을 제안하였으며, 이러한 방식을 360[W]급의 2상 유도전동기용 벡터제어 인버터에 적용하여 컴퓨터 시뮬레이션과 실험으로 유효성을 확인하였다.

  • PDF

How to Set an Appropriate Scale of Traffic Analysis Zone for Estimating Travel Patterns of E-Scooter in Transporation Planning? (전동킥보드 통행분포모형 추정을 위한 적정 존단위 선정 연구)

  • Kyu hyuk Kim;Sang hoon Kim;Tai jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.51-61
    • /
    • 2023
  • Travel demand estimation of E-Scooter is the start point of solving the regional demand-supply imbalance problem and plays pivotal role in a linked transportation system such as Mobility-as-a-Service (a.k.a. MaaS). Most focuses on developing trip generation model of shared E-Scooter but it is no study on selection of an appropriate zone scale when it comes to estimating travel demand of E-Scooter. This paper aimed for selecting an optimal TAZ scale for developing trip distribution model for shared E-Scooter. The TAZ scale candidates were selected in 250m, 500m, 750m, 1,000m square grid. The shared E-Scooter usage historical data were utilized for calculating trip distance and time, and then applying to developing gravity model. Mean Squared Error (MSE) is applied for the verification step to select the best suitable gravity model by TAZ scale. As a result, 250m of TAZ scale is the best for describing practical trip distribution of shared E-Scooter among the candidates.

The Synchronous Control System Design for Four Electric Cylinders (4축 전동실린더의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1209-1218
    • /
    • 2016
  • In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.

Development of a YOLO-Based Electric Kick Scooter Photo Recognition System (YOLO 기반 전동 킥보드 사진 인식 시스템 개발)

  • Kim, Chaehyeon;Yu, Sara;Yoon, SeoYoung;Kim, Gayoung;Kong, Hyeonjeong;Lee, Jinbok;Song, Sungmin;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.622-624
    • /
    • 2022
  • 최근 편리성과 경제성 등의 이유로 개인형 이동장치인 전동 킥보드의 사용이 증가하고 있다. 사용자들은 앱으로 주변의 전동 킥보드 위치를 확인한 뒤, 가까운 기기를 찾아 이용한다. 하지만 전동 킥보드의 위치는 GPS로 표시되기 때문에 10 m 이상의 오차가 날 수 있다. 이를 보완하기 위해 (주)올룰로의 킥고잉은 사용자가 전동 킥보드 반납 시 촬영한 전동 킥보드 사진을 GPS 위치 정보와 함께 제공한다. 이 사진을 통해 다음 사용자는 더욱 정확히 전동 킥보드를 찾을 수 있다. 하지만 일부 사용자들은 전동 킥보드가 존재하지 않는 사진을 올리기도 하며, 따라서 사용자들이 촬영한 사진 중 실제 전동 킥보드가 존재하는 사진들만 제공하는 것은 매우 중요하다. 따라서 본 논문은 사용자들이 촬영한 사진 중 실제 전동 킥보드가 존재하는 사진들만 정확히 인식하는 YOLO 기반 시스템을 개발한다. 제안 방법은 (1) 전동 킥보드를 부분별로 탐지하는 기법과 (2) 전동 킥보드를 촬영된 각도에 따라 세분화하여 인식하는 기법을 사용한다. 실제 사용자들이 촬영한 사진을 사용한 실험 결과, 제안 방법은 기존 방법에 비해 더욱 정확히 전동 킥보드 사진을 인식하는 것을 확인하였다.

The Synchronous Control System Design of a Movable Weir using Coupling Structure (커플링구조를 이용한 가동위어의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • The weir to regulate water level in a tide generation tank is above and below carried by two electric cylinders which are mounted on right and left of weir itself. In this case, a movement difference between right and left cylinder causes unbalance of weir and friction between weir and guide. And then, the weir will not be sent to target point. In this study, a synchronous control system is developed to take accurate and quick equilibrium of the weir. The control system based on cross coupled structure consists of two I-PD controllers and a lead compensator. Each of the I-PD controllers is designed in order that the electric cylinder may exactly follow the reference signal without overshoot and input saturation. And the lead compensator is designed to achieve stable and accurate synchronization. Finally, the simulation result shows that the designed synchronous control system is effective for elimination of synchronous error.

Analysing Spatial Usage Characteristics of Shared E-scooter: Focused on Spatial Autocorrelation Modeling (공유 전동킥보드의 공간적 이용특성 분석: 공간자기상관모형을 중심으로)

  • Kim, Sujae;Koack, Minjung;Choo, Sangho;Kim, Sanghun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • Policy improvement such as the revision of the Road Traffic Act are proposed for personal mobility(especially e-scooter) usage. However, there is not enough discussion to solve the problem of using shared e-scooter. In this study, we analyze the influencing factors that amount of pick-up and drop-off of shared e-scooter by dividing the Seoul into a 200m grid. we develop spatial auotcorrelation model such as spatial lag model, spatial error model, spatial durbin model, and spatial durbin error model in order to consider the characteristics of the aggregated data based on a specific space, and the spatial durbin error model is selected as the final model. As a result, demographic factor, land use factor, and transport facility factors have statistically significant impacts on usage of shared e-scooter. The result of this study will be used as basic data for suggesting efficient operation strategies considering the characteristics of weekday and weekend.

Design of an Electric Wheelchair Control Algorithm by Slope Recognition on uneven terrain (비평탄 지형에서의 경사 인식을 통한 전동 휠체어 제어 알고리즘 개발)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5738-5743
    • /
    • 2014
  • This paper evaluated an electric wheelchair control algorithm by slope recognition on uneven terrain. Nowadays, the population using wheelchair has been increasing rapidly due to increases in the elderly population. On the other hand, most wheelchairs are directly controlled by the user without any device capable of securing the safety of the user. This causes difficulties in wheelchair control from the influence of gravity on the slope. This paper proposes a vehicle control algorithm that can move a wheelchair similar to moving on a plane. At that time, sensors are not used to recognize the degree of the slope. All processes were verified by simulation.

A Study on the Synchronous Control of Two Motor Cylinders with Skew Disturbance (비대칭외란을 고려한 2축 전동실린더의 동기제어에 관한 연구)

  • Byun, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.129-136
    • /
    • 2009
  • A motor cylinder is widely used as an apparatus for transportation of a small scale load. It is, however, difficult for only one motor cylinder to transfer a large scale load such as a weir. The large scale load is transferred by two motor cylinders which are mounted on right and left of load itself. In this case, the displacement difference generated between two motor cylinders, namely, the synchronous error has a bad influence on the transportation. In this study, a synchronous control system is designed to restrain synchronous error caused by skew disturbance. The control system is composed of two disturbance observers and one synchronous controller. Each disturbance observer is designed to restrain the skew disturbance. And the synchronous controller is designed to achieve stable and accurate synchronization. Finally, the simulation results show that the designed control system is effective for the skew disturbance which lead to synchronous error.

  • PDF

A Study on the Analysis of Transmission Errors of Spiral Bevel Gears (스파이럴 베벨기어의 전동오차 해석에 관한 연구)

  • Shin, Gwe-Su;Lee, Kee-Hyung;Chae, Hee-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.78-89
    • /
    • 1992
  • The most important criteria of quality of meshing and contact of gears are the low level of noise and the sufficient dimensions and location of the contact. A new approach for determination of machine-tool settings for spiral bevel gears is proposed. The proposed settings provide a function of transmission errors, the desired location and orientation of contact. The function is able to absorb piece-wise linear functions of transmission errors that are caused by the gear misalignment and to reduce the gear noise. The determination of pinion machine-tool settings is based on the local synthesis of gears. A computer program for simulation of meshing bearing contact and determination of transmission errors for misaligned has been developed.

  • PDF