• Title/Summary/Keyword: 전달손실 최대화

Search Result 7, Processing Time 0.021 seconds

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

One-dimensional Topology Optimization for Transmission Loss Maximization of Multi-layered Acoustic Foams (전달손실 최대화를 위한 공기-흡음재 배열 최적설계)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Kim, Eun-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.938-941
    • /
    • 2006
  • We present a new design method of one-dimensional multi-layered acoustic foams for transmission loss maximization by topology optimization. Multi-layered acoustic foam sequences consisting of acoustic air layers and poroelastic material layers are designed for target frequency values. For successful topology optimization design of multi-layered acoustic foams, the material interpolation concept of topology optimization is adopted. In doing so, an acoustic air layer is modeled as a limiting poroelastic material layer; acoustic air and poroelastic material are handled by a single set of governing equations based on Biot's theory. For efficient analysis of a specific multi-layered foam appearing during optimization, we do not solve the differential equations directly, but we use an efficient transfer matrix approach which can be derived from Biot's theory. Through some numerical case studies, the proposed design method for finding optimal multi-layer sequencing is validated.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method (전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계)

  • Kim, Eun-Il;Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF

Time Critical Packet Scheduling via Reinforcement Learning (강화학습을 통한 시간에 엄격한 패킷 스케쥴링)

  • Jeong, Hyun-Seok;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyoung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.45-46
    • /
    • 2018
  • 본 논문에서는 시간에 엄격한(Time critical) 산업용 IoT(Industrial IoT) 환경의 무선 센서 네트워크 시스템 상의 효율적인 패킷 전달과 정확도(Accuracy) 향상을 위해 강화학습과 EDF 알고리즘을 혼합한 스케쥴링 기법을 제안한다. 이 방식은 다중 대기열(Multiple queue) 환경에서 각 대기열의 요구 정확도(Accuracy Requirement)를 기준으로 최대한 패킷 처리를 미룸으로써 효율적인 CPU자원 분배와 패킷 손실율(Packet Loss)을 조절한다. 제안하는 기법은 무선 센서 네트워크 상의 가변적이고 예측 불가능한 환경에 대한 사전지식이 없이도 요구하는 서비스의 질(Quality of service)를 만족할 수 있도록 한다. 또한 정확도를 요구조건으로 제시하여 마감시간이 중요시되는 작업에서도 효율을 최대화한다.

  • PDF

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.