• Title/Summary/Keyword: 전단 중심

Search Result 233, Processing Time 0.035 seconds

Design and Implementation of Front Agent for Electronic Post-Office (전자 우체국을 위한 전단부의 설계 및 구현)

  • Kweon, Oh-Hyung;Jung, Joon-Young;Lee, Joon-Suk;Youn, Gi-Song;Jung, Min-Soo;Cho, You-Sub
    • Annual Conference of KIPS
    • /
    • 2000.10b
    • /
    • pp.1251-1254
    • /
    • 2000
  • 인터넷 우편 시스템은 웹상에서 작성한 우편을 수신자에게 메일뿐만 아니라 이를 인쇄하여 수신자에게 직접 전달해주는 우편 전달 시스템이다. 따라서 직접적인 우편을 전달함으로서 기존의 디지털 문명의 의한 각박해진 현 사회에 보다 인간미가 넘치는 매개체로서의 역할과 획기적인 시간 단축과 비용절감의 효과를 누리고자 한다. 현 인터넷 우편 시스템은 크게 3가지로 Front Agent, End Agent, Management Agent 나뉘어 지는데 본 논문에서는 Front Agent를 중심으로 서술하였다.

  • PDF

Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads (반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구(II) -바벨형 단면(Barbell Shape)의 내력과 연성을 중심으로-)

  • 최창식;이용재;윤현도;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.68-73
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with barbell cross section under cyclic loads are discussed and evaluated. Four halr scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick and the section of all boundary column at both ends is 200 mm $\times$ 200mm. Main variables are : design concept, vertical flexural reinflrcement ratios and reinforcement details(including crossed diagonal shear reinforcement in SW7 specimen). In SW7 specimen, maximum strength and consequently dissipating energy index were 1.45 and 1.28 times greater than those of SW6 specimen, respectively.

  • PDF

Analysis of Slope Stability Effect of Arbors' Roots - On Tensile Strength of the Roots - (교목류 뿌리의 비탈면 안정효과 분석 - 뿌리의 인장강도를 중심으로 -)

  • Oh, Jae-Heun;Hwang, Jin-Sung;Cha, Du-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • To provide the basic information about slope stability analysis, tensile force and strength of tree roots like Pinus koraiensis, Larix leptolepis, Pinus densiflora, Quercus mongolica, and Alnus japonica were measured and analyzed. As a result, tensile force increases in forms of involution of root diameter. The mean tensile strength of roots like P. koraiensis, L. leptolepis, P. densiflora, A. japonica and Q. mongolica were calculated as $165.38kgf/cm^2$, $172.78kgf/cm^2$, $176.25kgf/cm^2$, $214.29kgf/cm^2$ and $224.19kgf/cm^2$ respectively. It was shown that tensile strength decreasing tendency as root diameter increases. Also, recalculated soil shear strength by tensile strength of the roots like P. koraiensis, L. leptolepis, P. densiflora, A. japonica and Q. mongolica were $0.099kgf/cm^2$, $0.104kgf/cm^2$, $0.106kgf/cm^2$, $0.129kgf/cm^2$ and $0.135kgf/cm^2$ respectively.

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

Impact Resistance of UHPC Exterior Panels under High Velocity Impact Load (고속충격을 받는 외장 UHPC 패널의 내충격성능)

  • Kang, Thomas H.-K.;Kim, Sang-Hee;Kim, Min-Soo;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • This experimental study aims to evaluate the impact performance of UHPC exterior panels through high velocity impact tests. The impact performance of UHPC was compared with that of granite in terms of panel thickness, and strain histories were recoded on the rear face of panel specimens. The UHPC turned out to be a good exterior facade material, because the appearance of UHPC is natural enough and impact performance was superior to granite. After colliding, compression pulse reached to the rear face but that pulse was reflected in tension pulse with respect to the free point outside the rear face of the panel. This tension pulse caused the scabbing from the rear side, as the strain histories on the rear face showed three different regions as compression region, steady region and tension region. The shear plug deformation by shear force also was one of the primary reasons for the scabbing based on the observation. Therefore, the scabbing seemed to be affected by both tension and shear forces.

Structural Behavior of Bolted Lap-Joint Connection in the Pultruded FRP Structural Members (볼트로 겹침이음된 펄트루젼 복합재 접합부의 구조적 거동)

  • Lee, Young-Geun;Shin, Kwang-Yeoul;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, we present the result of an experimental investigation pertaining to the structural behavior of bolted lap-joint connection of pultruded fiber reinforced plastic structural shapes. In the experimental investigation, in order to find the mechanical property of the material, tension and shear tests on the pultruded structural composite specimen are conducted prior to the investigation on the structural behavior of bolted lap-joint connection of the member. Based on the result, number of bolts, type of placement and location of bolt are determined to be a test variable. Three different types of experimental specimens are prepared. Tensile load is applied through the center of the specimen with lap-joint connection and the structural behavior and failure mode of the test specimens with respect to the tensile load increment are investigated. As a result, it is found that most of the failure mode at the lap-joint connection is shear failure mode. Consequently, it is also found that the data obtained through this experimental program could be used for the structure connection design as a basis.

Parametric Studies of Flexural Free Vibrations of Circular Strip Foundations with Various End Constraints Resting on Pasternak Soil (경계조건 변화에 따른 Pasternak 지반으로 지지된 원호형 띠기초의 휨 자유진동에 관한 변수연구)

  • Lee, Byoung-Koo;Li, Guang-Fan;Kang, Hee-Jong;Yoon, Hee-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.835-846
    • /
    • 2007
  • This paper deals with the flexural free vibrations of circular strip foundation with the variable breadth on Pasternak soil. The breadth of strip varies with the linear functional fashion, which is symmetric about the mid-arc. Differential equations governing flexural free vibrations of such strip foundation are derived, in which the elastic soil with the shear layer, i.e. Pasternak soil, is considered. Effects of the rotatory and shear deformation are included in the governing equations. Differential equations are numerically solved to calculate the natural frequencies and mode shapes. In the numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. Four lowest frequency parameters accompanied with their corresponding mode shapes are reported and parametric studies between frequency parameters and various system parameters are investigated.

3D Finite Element Analysis of Rock Behavior with Bench Length and Gther Design Parameters of Tunnel (터널의 벤치길이를 중심으로 한 설계변수에 따른 암반거동의 3차원 수치해석)

  • 강준호;정직한;이정인
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Focusing on the bench length, this paper presents the results of 3-dimensional elafto-plastic FE Analysis un tunnels of full face, mini-bench and short bench excavated in weathered rock. Influences of unsupported span, horizontal to vertical stress ratio, thickness of shotcrete on the behavior of rock and support were a1so studied. Results showed that displacements of mini-bench tunnels responded more sensitively to bench lengths than those of short bench. The effects of bench excavation on upper half displacement increased with longer unsupported span. Horizontal to vertical stress ratio showed a greater influence on displacement and preceding displacement ratio or sidewall rather than those of crown and invert.

  • PDF

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

A Case Study on the Restoration of Collapsed Geosynthetics Reinforced Soil Wall Using Limit Equilibrium and Numerical Analyses (한계평형해석과 수치해석에 의한 붕괴된 보강토 옹벽 복구 사례에 관한 연구)

  • Won, Myoung-Soo;Kim, Hyeong-Joo;Kim, Young-Shin;Choi, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.107-118
    • /
    • 2013
  • Geosynthetic reinforced soil (GRS) walls have been increasingly applied recently due to its numerous geotechnical engineering applications. However failure occurs in some cases of constructed GRS walls. These GRS wall failures are mostly due to the unpredictable characteristics of intensive rainfall. Hence, the need for new and innovative ideas for rehabilitation methods has been getting attention. This paper introduces a case study for the design and restoration method of collapsed GRS wall using Limit equilibrium and Numerical Analyses. Restoration method includes: (1) soil nailing without backfill excavation and (2) reconstruction with GRS wall after collapsed backfill excavation. Analyses results show minimal horizontal displacements and shear strain on the reinforced concrete facing for the restoration case with soil nailing. On the other hand, horizontal displacements are developed in the middle of the mortar block facing and shear strains are developed at the bottom facing with spiral curves for the reconstructed GRS wall after collapsed backfill excavation. Therefore, the collapsed GRS wall was restored with the soil nailing without backfill excavation and its construction procedures are discussed in this paper.