• Title/Summary/Keyword: 전단 접합

Search Result 606, Processing Time 0.019 seconds

Stress Distribution in Construction Joint of Prestressed Concrete Bridge Members with Tendon Couplers (고강도 철근콘크리트 보-기둥 외부 접합부의 전단 거동에 관한 실험)

  • Park Ki-Choul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.535-542
    • /
    • 2005
  • Two series of experiments on the performance of beam-column joints in High-Strength Reinforced concrete frames were carried out. Main experimental parameters were : concrete strength, column axial load and amount of joint hoop reinforcement. Test result showed that the ultimate shear strength of exterior joints increased of column axial compressive force and the amount of the joint hoop reinforcements. Through the regression analysis on the 24data, the following equation is obtained $jv_u=(2.935{\times}10-3\;{\rho}jw{\cdot}fy\;+\;0.365){\sqrt{f_{ck}}}$

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Shear Strength Model for Interior Flat Plate-Column Connections (무량판 슬래브-기둥 내부 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.345-356
    • /
    • 2010
  • An alternative design method for interior flat plate-column connections subjected to punching shear and unbalanced moment was developed. Since the slab-column connections are severely damaged by flexural cracking before punching shear failure, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the flexural moment of the slab, the punching shear strength of the compression zone was evaluated based on the material failure criteria of concrete subjected to multiple stresses. The punching shear strength was also used to evaluate the unbalanced moment capacity of the slab-column connections. For verification, the proposed strength model was applied to existing test specimens subjected to direct punching shear or combined punching shear and unbalanced moment. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods in ACI 318 and Eurocode 2.

Lattice Shear Reinforcement for Slab-Column Connection Subjected to Unbalanced Moment (불균형모멘트를 받는 슬래브-기둥 접합부를 위한 래티스 전단 보강)

  • Park, Hong-Gun;Kim, You-Ni;Song, Jin-Kyu;Kim, Sun-Kyu;Lee, Chul-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2007
  • A slab-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In the present study, to investigate the earthquake resistance of newly developed lattice shear reinforcement, experimental study was performed for interior slab-column connections subjected to cyclic loading. For comparison, specimens with existing shear reinforcement method such as stud rail, shear band and stirrup were also tested. The test result showed that the structural capacity of the lattice shear reinforcement was superior to those of the existing methods and was greater than the code-specified strength. On the other hand, the existing methods did not significantly improve the shear strength of the specimens. The shear strengths of the existing methods were much less than the code-specified shear strength.

Theoretical Models for Predicting Racking Resistance of Shear Walls (전단벽의 전단성능 예측 모형)

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.96-105
    • /
    • 2002
  • Shear wall is the most important component resisting lateral loads imposed to a building by wind or earthquake. In shear walls, lateral load applied to framing is transmitted to sheathing panel through nailed joints between sheathing and framing so that the load is resisted by in-plane shear strength of sheathing. Therefore, nailed joints are the most basic and important component in the viewpoint of stiffness and strength of shear walls. In this study, stiffness and strength of single nailed joint were measured by single shear tests of nailed joints and used as input for theoretical models developed to estimate racking behavior of shear walls. And shear walls were tested to check the accuracy of theoretical models estimating racking resistance of shear walls. Stiffness of nailed joint was affected by grain direction of stud but direction of sheathing panel had little effect. Behavior of nailed joint and shear walls under lateral loads could be represented by three lines. Theoretical model II was more accurate than theoretical model I in estimating racking behavior of shear wall under loads.

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

Effects of Reinforcing Method Influnced to the Shear Strength of Vertical and Horizontal Joints in Precast Concrete Large Panel Structures -Focused on the Vertical Joints and Slab-Slab Type Horizontal Joints- (대형판조립식 구조 수직.수평접합부의 전단강도에 미치는 보강방법의 영향-수직접합부 및 슬래브-슬래브 수평접합부를 중심으로-)

  • Chung, Lan;Park, Hyun-Soo;Cho, Seung-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.171-179
    • /
    • 1996
  • A proposal of the basic fbrm on the design of joint parts that can increase the shear strength by the useful joint shapes of each member is intended. The vertical joint parameters are the number of' shear key and a variety of' reinfbrcement details and the horizontal joint paramctcrs arc t,hc number of shear key and the direction of' shear f'orcc. 10 PC panel vortical joint arid 12 PC panel horizontal joint specimens were tested to investigate the effects of these parameters. Test results show that : 1. The ductility of the test specimen that has the horizontal reinforcing steels is larger than that does not have. 2. The maximum resisting force of round bar specimen is similar to that of strand wire specimen under the condition of fixed horizontal displacement.

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동)

  • Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.894-901
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior joint caused the 10%∼20% reduction of strength and 27% reduction of ductility in comparison with the case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (전단머리 보강 CFT기둥-RC 무량판 접합부의 펀칭전단강도)

  • Kim, Jin-Won;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • This paper summarizes full-scale gravity-load test results on CFT column-to-RC flat plate connections reinforced with shearhead. CFT construction has many structural and constructional advantages over conventional steel and RC column construction and is gaining wide acceptance. Meanwhile the use of RC flat plate system in the basement and residential floors of tall buildings is often mandatory to reduce story height and enable rapid construction in domestic practice. Combining CFT column and flat plate floor is expected to result in further rapid construction. However, the issues related to connecting CFT column to RC flat plate have not been fully addressed yet. Several promising connecting schemes by using steel shearhead were proposed and tested in this study. Test results showed that the proposed connection can exhibit the punching shear strength higher than RC flat plate counterparts. An empirical formula that can reasonably predicts the punching shear strength of the proposed connection was also proposed.