• Title/Summary/Keyword: 전단 스프링

Search Result 74, Processing Time 0.02 seconds

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

A Study of New Approach on Elasto-Plastic Analysis of shell Structures (쉘구조물의 탄소성해석에 관한 새로운 해석법의 연구)

  • Kwun Taek Jin;Park Kang Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 1987
  • 연속체의 해석에 있어서, 특별한 경우를 제외하고는, 구조물의 개략적인 거동을 파악해야 될 경우가 종종 있다. 이러한 요구에 부응하기 위해서 강체요소법(Rigid Element Method)이라 불리우는 새로운 해석법이 개발되었다. 강체요소법은 원래 평정연구실에서 벽식프리캐스트 철근콘크리트 구조물의 탄소성해석을 하기 위해서 개발된 해석법에 착안하여, 내수벽과 같은 연속체에 적용함으로서 시작된 수치해석법이다. 그 후 저자들은 도통쉘, 구형쉘 혹은 이들이 조합된 쉘구조물에 적용할 수 있도록 개발 확장하였다. 강체요소법의 기본개념은 연속체의 분해된 각 요소를 강체(rigid body)라고 가정하고, 각 요소들은 요소의 강성으로 치환된 가상스프링으로 서로 연결되어 있다고 가정하여, 이 가상스프링의 거동을 평가함으로서 전체구조물의 거동을 파악하는 해석법이다. 이때 요소의 주변에 취해진 스프링은 해석을 단순화하기 위해서 축력, 면내전단력 및 면외전단력만을 전달한다고 가정하고, 요소의 강체변위(자유도)는 요소내의 임의의 한 점에서 취하며, 이 점에서의 강체변위(rigid displacements)는 요소의 주변에 취해진 스프링을 통하여 다른 요소로 전달된다. 상기와 같은 강체요소법의 개념을 연속체의 탄성 및 탄소성해석에 적용하면, 해석적 개념이 단순할 뿐만 아니라 구조물 전체의 자유도수를 대폭 줄여 컴퓨터 계산시간을 절약할 수 있는 잇점이 있고, 거시적인 모델(macroscopic modeling)과 미시적인 모델 (microscopic modeling)의 중간적인 성격을 가지기 때문에 구조물의 파괴상황에 대해서도 그 개략을 파악할 수 있다. 본 논문에서는 강체요소법을 보다 일반화된 해석법으로 개발, 확장하기 위해서 종전에 단층스프링시스템(single-layer spring system)으로 해석이 어려웠던 문제점들을 보완한 복층프링시스템(double-layer spring system)을 사용함으로서 휨, 비틀림의 효과를 파악할 수 있는 이론적 개념을 적용한 새로운 구요소, 원통요소 및 평면요소를 개발하고, 이러한 강체요소들의 적합매트릭스의 유도 및 해석저긴 방법을 정식화하였다. 또 휨, 비틀림 및 전단력의 효과를 고려한 사각형원통요소 및 능형원 통요소를 이용하여 원통쉘의 탄성 및 탄소성해석할 수 있는 프로그램을 개발하고, 이 프로그램으로 캔틸레버로된 연속형철근콘크리트 원통쉘의 탄성 및 탄소성해석에 적용하여 구조물의 거동에 관한 수치해석의 결과, 즉 내력의 분포, 균열의 진전, 파괴의 상황 및 변형의 상태 등을 파악해 보았다.

  • PDF

Transient Analysis of High-rise Wall-Frame Structures with Outriggers under Seismic Load (초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석)

  • Kim, Jin Man;Choe, Eun Hui;Park, Dae Gyu;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.303-312
    • /
    • 2008
  • In this paper, the seismic behavior of shear wal-frame systems is analyzed. The governing equations of the wall-frame systems with outrigger truss are formulated through the continuum approach and the whole structure is idealized as a shear-flexural cantileverwith rotational spring. The effect of shear deformation and flexural deformation of the wall-frame and outrigger trusses are considered and incorporated in the formulation of the wall-frame structures with and without outriggers are compared by using finite element analysis incorporated with the Newmark-${\beta}$ method. Numerical results are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reason ably accurate results in the early design stage of tall building structures.

Free Vibrations of Shear Deformable Circular Arches with Rotationally Flexible Supports (전단변형을 고려한 회전 가능한 지점을 갖는 원호 아치의 자유진동)

  • Oh, Sang-Jin;Yoon, Hee-Min;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1181-1184
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with rotationally flexible supports, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, and the rotational spring stiffness.

  • PDF

A Simple Model for the Nonlinear Analysis of an RC Shear Wall with Boundary Elements (경계요소를 가진 철근콘크리트 전단벽의 비선형 해석을 위한 간편 모델)

  • Kim, Tae-Wan;Jeong, Seong-Hoon;You, Tae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • A simple model for reinforced concrete shear walls with boundary elements is proposed, which is a macro-model composed of spring elements representing flexure and shear behaviors. The flexural behaviour is represented by vertical springs at the wall ends, where the moment strength and rotational capacity of the wall are based on section analysis. The shear behaviour is represented by a horizontal spring at the wall center, where the key parameters for the shear behavior are based on the flexural behaviour since the shear walls with boundary elements are governed by the flexure. The proposed model was prepared with the results of hysteretic tests of the shear walls, and then the reliability of the hysteretic rule and variables was investigated by nonlinear dynamic analyses. Using parametric study with nonlinear dynamic analyses, the effect of the variables on demand and capacity, which are major parameters in seismic performance evaluation, are investigated. Results show that the measured and calculated shear forces versus the shear distortion relationships are slightly different, but the global response is well simulated. Furthermore, the demand and capacity are also changed in a similar way to the change in the major parameters so that the proposed model may be appropriate for reinforced concrete shear walls with boundary elements.

The Stability Analysis of Timoshenko Beam-Column on Pasternak Foundation (Pasternak지반 위에 놓인 Timoshenko보-기둥의 안정해석)

  • Lee, Yong-Soo;Lee, Byoung Koo;Kim, Sun Gyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.91-100
    • /
    • 2001
  • This paper is to analyze the stability of Timoshenko beam-column on Pasternak foundation, with the extensional and the rotational spring at center point of span by Finite Element Method. To verify this Finite Element Method, the results by the proposed method are compared with the existing solutionsof Timoshenko beam-column without the extensional and the rotational spring and the shear foundation. The dynamic stability regions are decided by the dynamic stability analysis of Timoshenko beam-column on Pasternak foundation with the extensional and the rotation spring at center point of span.

  • PDF

Nonlinear Static Analysis of Shear Wall Sub-assemblages Based on the Uniaxial Spring Model (선형 스프링모델을 이용한 전단벽식 부분구조의 비선형 정적해석)

  • Kim, Kyung-Min;Oh, Sang-Hoon;Lee, Sang-Ho;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.15-24
    • /
    • 2012
  • Domestic reinforced concrete (RC) apartments have a unique structural system that consists of shear walls and rink members of slabs and lintels. In this study, the nonlinear static analysis of two RC shear wall sub-assemblages, with and without lintels, was conducted using the uniaxial spring model to develop a method for accurately predicting the seismic behavior of domestic RC apartments. In the case of the specimen without lintels, the analytical result successfully represented a simulation of the nonlinear behavior of the specimen in accordance with the test result. On the other hand, in the case of the specimen with lintels, the analysis resulted in underestimating the nonlinear behavior of the specimen compared to the test result, because the coupling effect could not be predicted from the earlier loading cycle.