• Title/Summary/Keyword: 전단내력 효과

Search Result 78, Processing Time 0.023 seconds

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

A Study on the Structural Performance of Slab-column Joint at Flat Plate Structure Using ECC (고인성 시멘트 복합재를 활용한 플랫플레이트 구조의 슬래브-기둥 접합부 구조성능 연구)

  • Choi, Kwang-Ho;Park, Byung-Chun;Choi, Sung-Woo;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • One of the important considerations in structural designing the flat plate system is ensuring the resistance to punching shear caused by axial loads and the ductile ability to follow horizontal deformation under earthquake. In this study, the ECC (Engineered Cementitious Composite) has been placed in the critical section zone of punching shear at slab-column joint to improve ductility and the advanced details of shear reinforced area nearby critical section zone has been developed using stud and steel fiber. The shear performance tests were performed on the specimens with parameters of fiber type mixed with ECC, stud and steel fiber set into the shear reinforced area in which the failure pattern, joint strength, displacement and strain of the specimen were compared and analyzed. The test results showed that the strength and ductility of specimens with ECC applied to joint were better than those of RC flat plate system. Also, the shear reinforcement effect of stud and the ductility improvement of steel fiber concrete were confirmed in the shear reinforcement area.

Strength of PSC Bridge Decks using Half-Depth Precast Panel with Loop Joint (루프이음 반단면 프리캐스트 패널을 이용한 PSC 바닥판의 강도평가)

  • Chung, Chul Hun;Kim, Yu Seok;Hyun, Byung Hak;Kim, In Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.433-445
    • /
    • 2009
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. Research has also demonstrated that mechanical shear ties on the top of the panels are required. In a composite deck with precast panels, it is required to notice behavior of transverse joints between panels. In this paper, static tests of composite deck with shear ties and loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed. Also, a composite behavior was abserved between precast panel and slab concrete. Tested composite decks with shear ties have 140~164% ultimate strength than have no shear ties due to the increase of composite action. Therefore, the shear ties between the slabs were sufficient to enforce composite flexural behavior to failure.

An Experimental Study on the Bending Capacities of Steel-Concrete Column under the Axial Load (축력을 받는 SC 기둥의 휨 성능에 관한 실험 연구)

  • Lee, Hwan Soo;Oh, Myoung Ho;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.87-96
    • /
    • 2003
  • The Ssteel-Cconcrete (SC) Ccomposite Ccolumn is a new Ccomposite Ccolunin system, where hoops are welded between flanges of H-shapesd steel and concrete is filled in spaces between flanges are filled with con crete. Tests of SC composite columns were performed previously to determine their compression, bending and shear strength, and it showed good structural behavior. But sSince a column is usually subjected to an axial compression force, and bending it ihas needed to be bent forevaluate its structural behavior to be evaluated when its axial load and bending isaresimultaneously applied to the SC composite column. In this paper, tests were conducted to investigate the bending strength of SC composite columns subjected to axial compression force and bending moment. The parameters of the tests were concrete, a stud bolt, a hoop and a magnitude of axial compression. The test results showed that the maximum bending strength and ductility of an SC composite column were increased by 33-42% and 33-63%, respectively, comparinged to those of a bare steel column. Also, the results obtained bywith the Korean Limit State Design Code (LSD) presents a considerably safe side value compared to those of the Eurocode-4 and the Japan Code. However, wWhen the axial compression force is was increased, however, there awere considerable differences between the maximum strength obtained by the test and the LSD analysis. For this reason, it is recommended tothe use of the Eurocode-4 is recommended when calculates the strength of an SC composite column is being calculated, since the Eurocode-4 gives us a better estimation.

A New Methodology for Seismic Capacity Evaluation of Low-rise R/C Buildings (비선형요구내력스펙트럼을 이용한 저층 R/C 건물의 내진성능 평가법)

  • Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study proposed a new methodology for seismic capacity evaluation of low-rise reinforced concrete (RC) buildings based on non-linear required spectrum. In order to verify the reliability of the proposed method, relationships between results obtained using the proposed method and the non-linear dynamic analyses were investigated. Compared with the seismic protection index (Es=0.6) defined in the Japanese Standard, the applicability of the method was also estimated. Research results indicate that the method proposed in this study compares reasonably well with the detailed evaluation methods. Using the seismic evaluation method developed in this study, the seismic capacity category and earthquake damage degree of low-rise RC buildings corresponding to a specific earthquake level can be effectively estimated.

Experimental study of composite beams consisting structural laminated timber beam with concrete slab (구조용집성재보와 콘크리트슬래브로 구성된 합성보의 실험적 연구)

  • An, Hyun-Jin;Kim, Soon-Chu;Moon, Youn-Joon;Yang, Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.233-236
    • /
    • 2008
  • In the traditional way floors has been constructed there are no shear connectors between the concrete slab and timber joists. In this study, an existing floor system os improved by simply providing normal bolts or lag screw so that the composite action can be achieved. It is evident that the key elements in the composite beam are the shear connectors. The selection of these connectors was based on their shear capacity. The experimental study carried out in this research investigated the flexural behavior of composite beams. The experimental studies of composite beams showed that the ultimated load capacity of the proposed composite beam(LS-S10 specimen) is 1.29 times as high as the noncomposite one. Finally, it can be concluded that LS-S10 specimen consisting structural laminated timber beam and concrete slab can be significantly improved by providing appropriate shear connectors.

  • PDF

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

A Study on the Flexural Behavior of Concrete Filled Steel Tube Girder in Parametrically Varied Filling and Composition (충전 및 합성조건 변화에 따른 콘크리트 충전강관 거더의 휨거동에 관한 연구)

  • Chin, Won Jong;Kang, Jae Yoon;Choi, Eun Suk;Lee, Jung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.109-118
    • /
    • 2009
  • A new bridge system described in this paper uses concrete-filled steel tube (CFT) girders as a replacement for conventional girders. Experimental investigations were carried out to comprehend the flexural behavior of CFT girder. Specimens were manufactured considering several parameters such as the strength of filling material, the eventual presence and number of inner shear connectors to evaluate the bending bearing capacity of CFT girder. The experimental investigation consisted of designing and constructing a test specimen and loading it to collapse in bending to check the applicability of the system. Test results showed that concrete filled steel tube girders have good ductility and maintain their strength up to the end of the loading. The stiffening effect of the ㄱ-shaped perfobond rib is determined to contribute relatively to the increase of the bending bearing capacity.

The Effects of Shear Capacity on the Locations and Sizes of New Opening in Existing Reinforced Concrete Beams (기존 철근콘크리트 보에서 신설 개구부의 위치와 크기가 전단내력에 미치는 효과)

  • 강민철;이주나;연규원;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.891-896
    • /
    • 2000
  • It is necessary to drill new opening in an existing R.C beam either for service ducts and pipes or the determination of in place concrete strength. Therefore, to simulate in this study, 18-R.C beams were fabricated with circular openings. The major parameters considered are the sizes, location of opening and cut-off stirrup. These beams are tested shear failure and capacity under a point loading. The sizes of opening are changed 0.11, 0.2, 0.3 times of beam-depth and the locations of opening are divided into $X_1$ zone, $X_2$ zone, $X_3$zone. Loads are applied up to failure to observe the cracking initiation and propagation, initial diagonal cracking, midspan deflection. As a result, the sizes of opening with 0.11D and 0.2D in R.C beams without cutoff stirrup are profitable in $X_1$ and $X_3$zone. R.C beams with 0.3D and cutoff stirrup are advantageous in $X_3$zone.

A Study on the Dynamic Response of RC "L" Joint Under the Simulated Seismic Load (모의 지진하중을 받는 RC "L" joint의 동적거동에 관한 연구)

  • 박승범;청궁리
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.3
    • /
    • pp.100-107
    • /
    • 1982
  • 최근 철근 콘크리트 구조물의 지진하중 및 이와 유사한 진동하중에 대한 내진안전성 문제가 대두되어 이에 관한 모형공식체의 진동실험 및 실존구조물의 동적구조특성의 해석 등에 의한 내진성 향상을 위한 보강방법이 강구되고 있다. 본 연구에서는 진동하중에 파괴되기 쉬룬 철근 콘크리트 보와 기둥이 상호 교차되는 죠인트 구역의 동적파괴거동을 확인하기 위하여 "L"형 철근 콘크리트 죠인트와 부재를 제작, 모의지진하중 조건하에서의 동적 응답특성을 구명하고자 반복하중에 따른 joint구역과 보 및 기둥의 동적파괴거동을 고찰하였다. 특히 내진구조물 설계에 주요 요소인 연성(m)이 0.5, 1.0, 3.0일 때 각각 3회씩 그리고 m=5.0일 때 부재가 완전히 파괴될 때까지 4회 반복하여 반복하중을 작용시키면서 이때의 부재의 극한강도 및 그 변형성능을 LVDT System을 사용하여 조사분석하였으며, 파괴성상은 물론 배근효과에 대하여도 이를 구명하고자 노력하였다. 본 연구 결과 무엇보다도 부재의 강성과 내력의 향상 및 신축만곡, 전단변형 등의 변형성능의 개선 그리고 보의 휨파괴에 대한 보강 및 joint구역의 전단보강은 내진구조물 설계를 위하여 중요 사항임을 확인하였다.

  • PDF