A Study on the Dynamic Response of RC “L”
Joint Under the Simulated Seismic Load.
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ductility (g) is an important factor in the
I Introduction design of RC structures. The ductility (¢) of a
) material or a member is often defined as the

Through the years, RC design for seismic ratio of deformation at ultimate to that at

s ety has continuously been advanced®®®. A
% 1jor importance in the design of a building of
this sort is the intersection points where a bzam
or a girder may run into a column®%%19  This
point is more formally reffered to as a joint.
The purposs of this experiment is to investigate
‘the responss of a RC “L” joint which is subjec-
ted to a variable vertical cyclic load applied at

‘the tip of the bsam. For seismic loads, the
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yield®®'®. At this study, it will be interested to
determine whether both the column and the beam
are able to reach their ultimate capacities and
to observe cracking and deformations under
simulated seismic loading. Also this study carried
out to investigate the modes of cracking, the
effects of re-bar slip and working on stru~'ural .

response.
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A Stu-dv on the Dynamic Resoonse of RC “L” Joint Under the Simulated Seismic Load

. Description of Specimen and
Equipment

1. Specimen and Eguipment

The specimen is a reinforced concrete “L”
joint, Joint details are shown in Fig.2. The
relevant material properties of the specimen
are as follows; oy=3,585kg/cm?, Es=2,038,932
kg/cm?, ¢c=339kg/cm?, Ec=282,146kg/cm?.

Photo. 1. Testing Equipment for Sp2eimen

Photo. 2. Measuring Instruments for Test

3, 3

Fig. 1. Typical moment-crvature diagram

(M vs. @) to illustrate the definition
of ductility.

Concrete Mix ratio 1:1.5:3, W/C 499, Unite
Cement 365kg/m® Unit water 178kg/m?, G/S
1.88, Max. size of Coarse Agg. 25mm.

Instruments used in this test are 15 LVDT’s,
Pressure Transducer, Digital Volt Meter and X-
Y recorder. LVDT’s(#% 1-8) are used to measure
stretch and curvatures, LVDT’s(# 9-14) are
used to measure shear deformation and LVDT
(# 15) is used to measure tip deflection, In the
DVM, channeis 1 through 15 are for LVDT’s
and channel 16 is for the reading of pressure
transducer. Photo. 1,2 are the testing facilities.
Fig.2 is the description of specimen and Fig.3 is
the positions of LDV T’s.

2. Ductility

Ductility (g) is an important variable in the
design of R.C. structures expected to experience
seismic loads. Ductility of a member is defined
as the ratio of deformation at ultimate to that
at yield.

Ductility is important in seismic design in that
a joint must sustain a moment(My) over a large
angle of rotation so that local yielding will not
over the capacity of the structure.

For this experiment, ductility will be defined
as the observed tip deflection divided by the
calculated tip deflection at yield. Ductility will
be used as the criteria for maximum deflection

at each cycle.
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Fig. 2. Description of Specimen

II. Experimental Procedure and
Pre-calculations

The objective of the procedure is to perform
3 cycles at half yield(x=0.5, 4tip=0.6cm), 3
3
cycles at yield bad(px=3.0, 4tip=3.9cm) and as
#=>5.0(4Tip=6.5cm)

The

cycles at yield loading(x=1.0, 4tip=1.3cm),

many at until failure

s complete. ductility can be related to

¢ observed

p=——7— (&, =4Tip). 4Tip(Tip displacement)
¥ ‘
can be calculated from eq. (1)'%.
. (tmM vm'M |,
ATIP—SU°—EI—dX+ \ Tldx ............ (1)

m =Bending Moment of column(virtual force)
m’=Bending Moment of Beam(virtual force)

And the Py can be related from Min. (Py. B.
Bend, Py. B. Shear, Py. Col. Bend.]¥» Min. Py
will be the value of applied load to cause initial
yielding. In order to determine the yielding load
for the member, all of the possilbe modes of
failure were analyzed and the jacking force

required were calculated. The values of Py to

‘the regions for beam, joint and column.

 Nzrth toce South faze

Fig. 3. Locations of LVDT’s

use for the experiment is 3,400kg for yield(u=
1.0, 4Tip=1.3CM) and Target pressures are
88kg/cm? for downward load and 76kg/cm? for
upward load. The calculation of strech, curva-
tuvre and shear deformation are investigated on
Exten-
sions(stretch) are calculated between all parallel
LVDT’s(1-2, 3-4, 5-6, 7-8) by using eq.(2)

LVDTL
S:_fil_z‘gﬁ .................. () LVDT2 Ta
je--b—s|

Curvatures are calculated between LVDT’s(1-2,
3-4, 5-5, 7-8) by using eq. (3)

41+ 42

Cur, == 55 e
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Symbol : 4(4) : Elongaton
4(~) : Shortening
Shear deformation (r) are calculated for LVDT’s
(9-10, 11-12, 13-14) by using eq.(4)
(41—42) V/a>+1b?
T S T s Y
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1 : Deformation LVDT #1
2 : Deformation LVDT #2

V. Interpretation of Results
1. STATION 1 and 2 (EXTENSION)

In the elastic region (Cycle 1-6; elastic beha-

vior), stations 1 and 2 extend on the down. cycle
with station I being the dominant factor., On
the up cycle, 1 and 2 tend to compress with sta-
tion I again as the dominant factor.

In the inelastic region (Cycle 7-13; inelastic
behavior), stations 1 and 2 change their stretch
behavior completely with the introduction of two.
major shear cracks at the joint, on crack runn-
ing from outside to outside of the joint puts.
station 1 in a unstressed isolated region of the
joint, and puts the two anchoring points of
stafion 2 on opposite sides of the crack. Another
crack runs from the re-entry point towards the
spex. On the down cycle, the re-entry point
crack closes hence the load increases in with
little change in compression. On the up cycle,.
the two cracks open hence the increase in
extension with small change in apllied load.

STATION 1 and 2(CURVATURE)

The elastic behavior is as would be expected,.
an almost linear relationship between curvature
and applied load.

In the inelastic region, the opening and closing
of the two cracks dictate the behavior as in

the inelastic extension.

2. STATION 3 and 4 (EXTENSION)

The results from station 4 are meaningless:
for the elastic runs due to a cold solder connec-
ting the LVDT to the console.

The linear extension curve only reflects the-
behavior of station 3.

In the inelastic region, it is noted that both
the extension and compression are of comparable-
magnitude. On a close examination of the crac-
king pattern and the LVDT readouts, it can be-
seen that station 3 plays the dominant role at
this location. The extension plot seeme to reflect
a rigid body rotation of the beam about the
joint, the pivot point being directly above the:
anchoring point to station 3 away from the joint.

The left anchoring point of station 4 sits in a
section of the joint isolated from both the beam

and the column by cracks. Basically this section.
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follows the beam on the up cycles and resists so the curvature is not so great, but on the up
.compression on the down cycles. cycles, when the cracks open, the change in
STATION 3 and 4 (CURVATURE) curvature is greatly increased.

In the inelastic region, the mechanism expla-
3. STATIONS 5 and 6 (EXTENSION)

sined above is again apparent for the curvature

plots. On the down cycles, the cracks close and Before any cracks open, statoins 5 and 6 do

Table-1. Test Results for LVDT’s #1-14. (Unit : CM)
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not respond to any significant degree. But with
the opening of shear cracks, the statioas bszgin
to respond. At cycle 4, the first ductility 1
cycle, station 6 opens on the up cycle with the
appearance of the cracks and never quite reco-
vers. After this point the behavior is similar to
the 1/2 yield cycles, only displaced to the right.
This can be explained by rebar slip.

In the inelastic region, the cracks again play
a major role in the determination of the exten-
sion behavior. The explanation for stations 1
and 2 also hold for 5 and 6. The plastic exten-
sion strains for both 1 and 2 and 5 and 6 are
of the same order of magnitude due to the
dependence on the same system of cracks.

STATION 5 and 6 (CURVATURE)

The curvature diagrams holl the same general
shaps as the extension diagram. Hence it can be
concluded that one of the two stations dominate.
The dominant station being 6 which straddles
the re-entry crack. Station 5 has little response
since it is near a free surface and straddles no

open cracks.

4. STATIONS 7 and 8 (EXTENSION)

An interesting phenomenon occurs at this
station in the elastic region, the two stations
never compress. Instead the two stations take
turns being the pivot point for the rotation of
the beam. This bshavior is partially responsible
for the higher load reguired for tip defiection
on the down cycle.

At cycle 4, rebar isp and cracking . and the
absence of a direct compressive force pravents
complete recovery.

In the inelastic region, the mezhanism observed
for the earlier cycles become more pronounced
due to the slip of the #5 rebar running on the
inside of the joint on the up cycles.
and 5 and 6, the

opening and closing of the diagonal shear cracks

As in stations 1 and 2,

dominate the behavior of stations 7 and 8.
STATION 7 and 8 (CURVATURE)

In the leastic region, the curvature is fairly

small and recovery is almcst 100%.
In the inelastic region, this station as in other
stations tend to be dominated by the shear crack

running from cutside to outside.

£. STATIONS 9 and 10 (SHEAR DE-
FORMATION)

The elastic behavior is as wcould be expected
by elastic analysis. The inelastic behavior is
quite different.

As in stations 3 and 4 (which are on the other
side of the member) the “rigid body rotation”
mechanism seems to be in action here. On the
down cycle, 9 compresses and governs the shear
deformation. ‘

On the up cycles, 10 extends since the upper
anchoring point is on the apex section of the

joint tkat pushes away on the up cycles.

6. STATION 11 and 12 (SHEAR DE-
FORMATION)

The elastic behavior is h'ghly dependent on
cracking since the 2\1-yield cycles cause almost
no deformation, but as cracks form on full
yield cycles, the deformaticn takes a big jump.

The inleastic behavior is an extension of the
response at full yield. On the down cycles, 11
extends and 12 compresses about equal amount.

On the up cycles, the extension of station 12
is dominant. This is due to apex saction getting
pushed outward and taking the upper anchorage

point of station 12 with it.

7. STATIONS 13 and 14 (SHEAR DE-
FORMATION)

Before any cracking occurs, the shear strain
is negative on both up and down cycles, similar
On the

down cycles, the stations experience little com-

rd

to the behavior of stations 7 and 8.

pression, but on the up cycles, the experience
a large negative shear, as can bz comfirmed by
elastic analysis.

As expected, the shear deformation in the

column is small, approximately an order of
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maggnitude less than 9 and 10, and 11 and 12.
But again as in station 12, station 14 extends
on the up cycles due to the excursion of the

excursion of the apex section on the up cycles,

8. STATION 15 (TIP DEFLECTION)

In the elastic region, it can be seen that
recovery isalmost 100%, indicating that almost
all the energy bzing put into the system is
being returned. .

But on the early ductility 3 cycles, it can be
seen that the system takes up more energy and
tecovery is no longer complete. The energy
being lost to plastic deformation is evidenced
by the width of the hysterisis loops.

As the ductility increases, the plastic defor-
mation becomes complete, less energy is lost in
the system and less force is required to obtain

a certain deflection.

V. Conclusions

The major .conclusions that can be drown

from the studies are as follows: .

1. The joint exhibited a significant amount
of stiffness up through cycle 6, i.e., The joint
underwent simulated seismic loadings ofp=0.5
andp=1 still displayed a fairly steep slope on
the loaddeflection curve Note that the predicted
load at which flexural yielding occured in the
beam (part of the joint) corresponded closely to
the load required to achieve a tip deflection.
The beam portion of the joint had yielded .by
cycle and for each successive cycle (cycles 7,
8,4=3 and cycles 9, 10;=5), the jcint exhibited
decreasing amounts of stiffness.

2. Atp=0.5, a shear crack had developed in
the joint region corresponding to a downward
load. Atu=1.0, shear cracks propagated and
widened, note that tension cracks apbeared after
the p=0.5 cycles on all region of the joint, and
that these tension cracks propagated and
widened during the remainng cycles.

3. The moment curvature relation for joint
region does not resemble a cyclic-loading-type
pattern as would be expected, Note that the
instantaneous slopes of the moment-curvature

relations are much greater for the downward
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Qoading portion of the cycles than for the

upward loading portion. Atyg=5.0, the joint
was expending large, non-uniform deformations
for relatively small increments of load due to
.crack propagation and yield behavior of reinfo-
rcing steel.

4. In joint design, the weakest element of the
RC structures is the beam. The beam showed
much greater deflections than what had predicted
at yield, therefore indicating that beam-column
connections in the joint region are important
.areas to optimize design.

5. Instead of the re-entry point to apex cycle
opening on the down half cycle, it opened on
the up cycle. This can bs explained by the fact
that the crack initiated at the re-enty point
rather than in shear at the center of the joint.
Another probable cause for this maybe the small
steel density near the re-entry point compared
1o the section at the top of the beam.

To pursue the study of joints further, the
effects of radius of curvature on the re-entry
point and the steel density in that region should
be studied.
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