• Title/Summary/Keyword: 전단과정

Search Result 536, Processing Time 0.026 seconds

Analysis of Soil Nailed Wall Behaviour Based on Field Measurements (현장계측을 통한 소일네일링 벽체의 거동 분석)

  • 이철주;이도섭;김홍택;박재억;김충규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • Behaviour of soil nailed walls in Korea has been analysed based on a number of field measurements. The investigation has included interface shear strength development at the nail-soil interface from pull-out tests, lateral ground displacements, tensile force distributions along soil nails and mobilised interface shear stress distributions. Insights into the soil nailed wall behaviour based on the shear transfer mechanism at the soil-nail interface and partial mobilisations of the interface shear strength, governed by relative shear displacement, are reported and discussed. It is expected that results from the current research can provide relevant parameters required for preliminary design of soil nailed walls in Korea.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산점토의 비배수 전단강도 특성)

  • 김길수;임형덕;김대규;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.259-267
    • /
    • 2001
  • 실내시험으로 구한 점토의 공학적 성질은 샘플링, 운반, 저장, 그리고 성형과정 동안에 발생하는 시료의 교란으로 인해 원지반의 성질과 다르게 측정된다. 본 연구에서는 양산점토에 대한 삼축압축시험($CK_{o}$ UC) 결과를 이용하여 샘플링 방법에 따른 교란의 정도를 평가하였다. 실험에 사용된 시료는 76mm 튜브샘플러, 76mm 피스톤샘플러, 블록샘플러로 채취되었으며, 시료의 교란정도를 평가하기 위해 각 시료에서 측정된 체적변형률, 비배수 전단강도, Secant Youngs modulus, 그리고 파괴시 간극수압계수를 비교하였다. 시료의 교란정도를 평가하는 것 이외에도 SHANSEP 방법을 이용하여 수행한 $CK_{o}$ U 삼축압축시험 결과를 이용하여 양산점토에 대한 정규화 전단강도($C_{u}$ /$\sigma$$_{vc}$ )와 OCR 관계를 규명하였다. 또, 피에조콘 관입시험, 딜라토메타 시험, 그리고 현장 베인시험결과를 이용하여 구한 양산점토의 비배수 전단강도를 삼축압축시험 결과와 비교하였다.

  • PDF

Structural Analysis of Thin-walled Composite Blades with Multi-cell (다중 셀 단면을 갖는 박판 복합재료 블레이드의 구조해석에 관한 연구)

  • 정성남;이주영;박일주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.512-519
    • /
    • 2002
  • 본 연구에서는 임의의 형상의 다중세포 단면을 갖는 복합재료 블레이드에 대한 유한요소 구조해석을 수행하였다. 보 해석 모델은 구조연성 효과와 단면 벽의 두께, 횡 전단변형, 비틀림과 연관된 워핑 및 워핑구속효과 등을 고려하고 있다. 블레이드 힘-변위 관계식은 Reissner의 반복족에너지 함수를 이용한 혼합이론을 적용하여 유도하였다. 이 관계식은 굽힘 및 전단에 대해서는 Timoshenko 보의 형태로 그리고 비틀림 변형은 Vlasov 이론으로 근사하고 있다. 결과적인 [7×7] 구조강성 행렬은 전단변형 및 전단강성계수들을 특이한 가정에 의존하지 않고도 해석적으로 기술하고 있다. 본 정식화 과정을 통해서 구한 보 이론을 이중세포로 구성된 에어포일 형상의 복합재료 블레이드에 적용하였으며, 기존의 실험 연구 및 다차원 유한요소해석 결과들과 비교 연구를 수행하여 본 해석모델의 타당성을 보이고자 하였다.

  • PDF

A Numerical Study on Shear Behavior of the Interface between Blasted Rock and Concrete (발파 암반-콘크리트 경계면에서의 전단거동특성에 대한 수치해석적 연구)

  • Min, Gyeong-Jo;Ko, Young-Hun;Fukuda, Daisuke;Oh, Se-Wook;Kim, Jeong-Gyu;Chung, Moon-Kyung;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.26-35
    • /
    • 2019
  • In designing a gravity-type anchorage of earth-anchored suspension bridge, the contact friction between a blasted rock mass and the concrete anchorage plays a key role in the stability of the entire anchorage. Therefore, it is vital to understand the shear behavior of the interface between the blasted rock mass and concrete. In this study, a portable 3D LiDAR scanner was utilized to scan the blasted bottom surfaces, and rock surface roughness was quantitatively analyzed from the scanned profiles to apply to 3D FEM modelling. In addition, based on the 3D FEM model, a three-dimensional dynamic fracture process analysis (DFPA-3D) technique was applied to study on the shear behavior of the interface between blasted rock and concrete through direct shear tests, which was analyzed under constant normal load (CNL). The effects of normal stress and the joint roughness on shear failure behavior are also analyzed.

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading (주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구)

  • 이희석;박연준;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.350-363
    • /
    • 1999
  • The precision cyclic shear test system was established to investigate the mechanical characteristics of rough rock joints under cyclic loading conditions. Laboratory cyclic shear tests were conducted for saw-cut joints and artificial rough rock joints using Hwangdeung granite and Yeosan marble. Surface roughness and aperture characteristics of specimens were examined by measuring surface topography using the laser profilometer. Peak shear strength, phase difference during loading and unloading, and anisotropic shear behavior were investigated throughout the cyclic shear test results. These features and their subsequent variations in each loading cycle are significantly dependent upon the second order asperities and the strength of intact rock. It was observed that degradation of asperities for rough rock joints under cyclic shear loading followed the exponential degradation laws of asperity angle and that the mechanism for asperity degradation would be different depending upon the normal stress level, roughness of joint surface and the loading stage.

  • PDF

An Elasto-Plastic Constitutive Law for Modeling the Shear Behavior of Rough Rock Joints (거친 절리면의 전단거동 해석을 위한 탄소성 구성법칙)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.234-248
    • /
    • 1998
  • This paper presents a new constitutive model for numerical modeling the shear behaviour of rough rock joints. The model incorporates the dilatancy of joints on the basis of elasto-plastic theory. Barton's empirical shear strength formular are adopted in the formulation process. The mobilized JRC concept is evoked to address the shear strength hardening and sofrening phenomena. The mobilized JRC in the pre- and post-peak range is approximated by assuming that the variation of JRC is a function of tangential plastic work. Discrete finite joint element is used to implement the proposed constitutive model. The model is validated by the numerical direct shear test on a single joint which is subjected to different boundary conditions. The test results are in good agreement with the experimental observations reported by other authors. The numerical tests also exhibit that the proposed model can simulate the salient features envisaged in the behaviour of rough rock joints.

  • PDF

Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History (상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • Ground failure by liquefaction can occur not only during shaking but also as the result of the post-liquefaction process after an earthquake. During the process of ground deformation and failure, excess pore water pressure in soil is redistributed, which can then lead to changes in the effective stress of soils. Therefore, in order to provide a further understanding of the phenomenon, we have to estimate the properties of effective stress during the recompression process in post-liquefaction as well, not only the total amount of pore water drained. The primary objectives of this study are to determine and compare the recompression properties in the post-liquefaction process in terms of the relationship between volumetric strains and mean effective stresses under the various conditions of relative density and shear stress history. In all experimental cases, the volumetric strains increase greatly in the low effective stress level, almost to the zero zone, and granite soil, which has fine grains, undergoes gradual changes in the relationship between volumetric strains and mean effective stresses compared with fine sand. And, we can also find that recompression properties in the post-liquefaction process by cyclic loading depend highly on the dissipation energy and maximum shear strain, and this fact can be obtained in all cases regardless of the existence of fine content, relative density, and loading history. Especially, granite soil having fine grains can be defined uniformly in the relationship between dissipation energy and maximum volumetric strain, while fine sand cannot be so uniformly defined.

Case Study on the Shear Characteristics of Limestone Joint Surfaces by Direct Shear Tests (직접전단시험에 의한 석회암 자연절리면의 전단특성 분석사례)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.292-304
    • /
    • 2019
  • Limestone joint surfaces with smooth roughness were experimented by means of both the individual direct shear tests based on the KSRM standard test method and the multi-stage direct shear test to apply the stepwise vertical stresses. Changes in the roughness of the joint surfaces before and after the shear tests were examined and the difference between the two kinds of tests mentioned above was analyzed. In both tests, the shear resistance increased as the joint roughness increased and the maximum shear stress required for shearing the joint surface increased as the vertical stress increased. The peak friction angle obtained by the multi-stage direct shear tests was only 63% of that obtained by the individual direct shear tests. In the multi-stage direct shear test, the initial engagement of the concave-convex parts changes frequently during stepwise shearing process, which deforms the original roughness of a joint surface. Accordingly, the individual direct shear test is thought to be more effective when obtaining the friction angle of the rock joint surfaces. Limestone joint surfaces with smooth roughness of JRC value 4~8 were found to have peak friction angle of $47^{\circ}$, residual friction angle of $38^{\circ}$ and cohesion of 37 kPa.

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.