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Structural Analysis of Thin-walled Composite Blades with Multi-cell
Sections

B oz 4" waF
Jung, Sung-Nam Lee, Ju-Young Park, II-Ju

A7 g9 A g E dus e BRAR Edol=d dg F38
3}21‘3}. B g 2de FzxdA gyet ol ¥ £/, 3 Agud v 53 g .ﬂ:ﬂ 4 °J-”:7L~—‘1—E
# 54 ugstn gt o= -y BAAL Reissnerd} gtRZ YA F4§ o
£33l fFE3A o] # Agto] 84 = Timoshenko R ez 1
Vlasov ©]20 8 ZAtsla ok 2 ¥—1?_ [7x7] 2734 FdL Aduy 2 A9 5ol 7t

Fol @t GIE HHHOE 145 Ak B AR S FAA T 2 2L lFAER T4
g °ﬂ°1i+_°é Yo BYAR Feol=o] Agagon, 712 49 4T L T feassy 2%Es
M A7 FRste] 2 AHRUe AL Holut v

1. Introduction

There have been a few selected research activities to model and analyze composite beams and blades
with multi-cell sections. Mansfield” developed a flexibility formulation for thin-walled composite beams
with two~cell cylindrical tube section. The equilibrium equations of shell wall were used to derive the
(4x4) flexibility matrix that captures the classical four beam variables (extension, bendings in two planes,
and torsion). Volovoi and Hodges@ used the variational asymptotic approach to derive the asymptotically
correct (4x4) stiffness matrix for thin-walled anisotropic beams with single- and double-celled box
sections. Numerical results were presented to show the importance of incorporating shell bending strain
measures even for closed thin-walled cross sections in the beam formulation. Chandra and Chopra@
investigated both analytically and experimentally the structural response of two-cell composite blades
with extension-torsion couplings. The stiffness matrix derived was of the order of (9x9) since they
include derivatives of shear strains as independent variables in order to include transverse shear
couplings in their formulation.

Recently, Jung, et al? developed a mixed beam theory that takes into account the effects of elastic
couplings, transverse shear deformation, warping, warping restraint, and bending and shear of the shell
wall. The term mixed was used because of the fact that the direct stresses are treated as the known
variables in terms of assumed displacements while the shear flow and hoop moment in the shell wall are
treated as the unknown. The resulting (7x7) stiffness matrix characterizes elastic properties of the beam
in terms of the axial, flap and lag bending, flap and lag shear, torsion, and torsion-warping deformations.
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The theory was applied to open and closed (single-cell) cross-section beams and a good correlation was
achieved in comparison with experimental test data.

In the present work, the mixed formulation developed in Ref. 4 has been applied to analyze coupled
composite beams and blades with single-cell box sections and two-cell airfoil. The formulation is
validated by comparison of the values of cross-sectional properties and steady response of multi-celled
section blades with experimental results and results from existing analysis methods found in the
literature.

2. Formulation

Fig.l shows the geometry and generalized forces for a composite blade with arbitrary cross-section.
Two systems of coordinate axes are used: an orthogonal Cartesian coordinate system (x,y,z) for the
blade; a curvilinear coordinate system ( x, s, #) for the shell wall of the section. The global deformations
of the beam are (U, V, W) along the x,vy and z axes, and ¢ is the twist about the x-axis. The local
shell deformations are (u, v, v,) along the x, s and n directions, respectively. Allowing the transverse
shear deformations, the local deformations at an arbitrary point on the shell wall can be expressed as

u="+n¥, ; v=A+n¥, ;. v,=0 N
In Eq. (1), «° % and 2 represent the deformations at the mid-plane of the shell wall and ¥,, &,
represent rotations of the normals to the mid-plane about the s- and x- axes, respectively. The shell
mid-plane displacements can be obtained in terms of the beam displacements and rotations as:

W=Vy +We,trg ; N=Vz,—W,—qp ; T.=9¢ 2
where » and ¢ are the coordinates of an arbitrary point on the shell wall in the (#%,s) coordinate
system. The cross-section rotations B, and B, are defined as:

ﬁy= Tez ™ VV,x ; ﬁzz Yy ™ V.x (3)
Using Eq. (1) through Eg. (2), the strain-displacement relation of the shell wall can be obtained as:

€= U,x+zﬁy,x+yﬁz,x_;¢,xx ’ Yxs= u0$+ V.Xy,$+ Wl‘z,s_i_ 7’¢'x (4)

xxx=Bz,xz,s_B)’,xy,s+q¢,xx ; xxs=2¢,x

where o is the sectorial area.”
Assuming the hoop stress flow N, is negligibly small and partially inverting the constitutive relations

for the shell wall of the section one can express the relations into the following form.”!
N, x C ne C nx C ne C ny C nr Exx
Mxx C nx C mx C me C my C mr X xx
Mx = Cm; C"wg C¢¢ C¢7 C(br X xs (5)
Vs —Co ~-C,, _CM Cﬂ CW
X —Cu —Cpe —Cy4 C, Co

or in symbolic notation

{s}=[CHe} (5a)
In order to assess the semi-inverted constitutive relations (5) into the beam formulation, a modified

form of Reissner’s semi-complimentary energy functional @y is introduced:

xs

M

Or=F I Netaet Mokt Moo= Negrg— Mo ®

The stiffness matrix relating beam forces to beam displacements is obtained by using the variational
statement of the Reissner functional which is given by
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afolfc{d)R*'szNm'*”xssMss'i“%—Nxs(m—u_x— u,,,)}dsdx=0 0

where [ is the length of the blade. Performing the integrals, Eq. (7) results in the equilibrium equations
of an element of the shell wall as well as the constraint conditions, which are found as:

Next Ny =0 i Negx=0
My o+ M =0 5 M, +M =0 (8
7xs_u(,)s_Vt,x=0 ; Xes™ ws,szo

The first two equations in Eq. (8) indicate that N, consists of a constant part and a part that
depends on the s-integral of N, , In addition, it is found from the third and fourth equations in Eq.
(8) that M. has a constant part, a part that varies linearly with s and a part that depends on the s

-integral of M, ,. Hence, one can write
Ny=Ng— L:(Ailen,x+Bi61ﬁ,x)ds Q)
M= Mt 30+ 2~ [ (Bigt ot Digtn, s
where N, MY, M2, M2 represent the circuit shear flows for each cell of a closed multi-cell section. For
a two—cell blade, these lead to eight unknowns which are expressed as:
W=l nngm mm! s mmi | 7 10

The continuity condition that must be satisfied for each wall of the section yields the following sets of
equations

ﬁnsds=2A1¢,x, f;xﬁa’s=0 ' ﬁyxﬁds=0, f;zxﬁa’8=0 an
gélrxsds=2Az¢,x, f;,xﬂdwo, f;rvxudwo, f;lzxnds=0

where the subscripts I and 1I indicate integration over the contour of cells I and II, respectively (see Fig.
2). Inserting Eq. (5) into Eq. (11), the unknown shear flows can be obtained as:

{m} =[QV - ([P aqs}+ IR as.))=00{as+[BYas.} (12)
where
{(ad=l U, By:Bex b0l ’ 13)

In Eq. (12), [Q] is a symmetric (8X8) matrix and [P] is a (8X5) matrix. Note that these matrices are
integrals over the contour and do not contain any coordinates such as v,z or s. If Eq. (12) is used, the
shear flow and the hoop moment, Eq. (9), can be expressed as

{A)=ta=1E1 =10 +1FYan) a4

1t is noted that N, and M should be determined separately for each cell. The shear flow components
N, and Mg are thought of as composed of an active and a reactive part according to the terminology

introduced in Gjelsvik.(s) The superscripts @ and 7 appeared in Eq. (14) reflect this aspect.
Using Eq. (5a), the Reissner statement (Eq. (7)) can be rewritten as

8f) [ AT {enTCHen+2(e1 TANEY + (&) TANE + Nalr— o= v, |dsde =0 (15)
where

{ed =1 €x xu 2 Na ME | T (16)

[A]=[ gn Ccrr
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The first term in Eq. (15) can be written in terms of beam displacements by using Eqs. (4) and (14),
! _ - i1 o -
sf [ A TNl T {andsax=s [ ${a} [ Rul{a:}ex an
where
1 z y 0 —w
0 -y, 2,0 ¢
0 0 0 2 0 (18)

fx fy fz f¢ fw
Ex gy & g¢ 8w

The cross-section stiffness matrix [ K] relates the cross-section force and moment resultants with

[(7]=

beam displacements in an Euler-Bernoulli level of approximation and is given by:

(FILNM, M, TM,| T=[Ru){as) 19
where N is the axial force, M, and M, are bending moments about vy and =z directions, respectively,
T is the twisting moment and M, is the Vlasov bi-moment. In order to obtain the equivalent of a
Timoshenko theory for the blade, we consider a cantilevered blade loaded at the tip with shear forces
V, and V, . Differentiating Eq. (19) with respect to x, we obtain

{(Fod=L0 V. V,000 "=[Rul{as: 20
Considering Eqs. (14) and (20), one can obtain the reactive part of the shear flow {£7} as
(EV=[F[Rw) (Fu}= [f’, g{ =) (1)
Combining this result with Eq. (17), Eq. (15) vields the following equation:

1 Rbb R as

ol [17, 734 [ ]{ }dx+62 [N~ v, sz =0 (22)
where )

| Bo | = [AT[4]L 71 93)

[ R.] = [r1741r]

V, and V, are determined such that Eq. (22) is satisfied. Inserting Eqgs. (4) and (5) into the second
part of Eq. (22), the shear forces {v,} can be related with beam displacement vector {g} as:

{v)=1Pl{q} (24)
where
{q}: '- U,x ﬂy,x ﬁz,x ¢,x ¢,n 7xy 7xzj T (25)

The elements of the (2X7) matrix [P] in Eq. (24) are the same as those obtained using the first order
shear deformation theory with shear correction factors of unity. By comparing Eq. (22) with Eq. (24) we
get:

{ ab} [ [[IZS] [&;]21]{(1} (26)

where [Isxs] is a (5X5) identity matrix and [0Osxs] is a null matrix of size (6X2), while [p,] has a
size of (2X5) and [p.] has a dimension of (2X2). Using Eq. (26), the first part of Eq. (22) yields the

following form:

! — — R R : - _ ! — ’
fléasdo.n [ g 2ol 2 o= [(o0 TRY a4 (@
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where the (7X7) stiffness matrix [ K] is given by
[Kl= [ Kbb Kb: ]._- {Rbb+2i\>brpl+pir1/\> 11171} {Rwﬁpfk m.Dz} (28)
K bo w {R bxv»D2+D1TK wﬁz} {PZTR .1-1’2}
The stiffness matrix [ K] in Eq. (28) represents the idealization of the blade at a Timoshenko level for
bending and shear, while the torsion is idealized as the Vlasov torsion.
The finite element equations are obtained by applying the stationary potential energy theorem. The
potential energy of the beam as written as:

{
=1 (o) Fyas—1 [ e rdax )

where F, is the generalized force vector, {g,} is the corresponding deformations and {7} is the

generalized load vector. Inserting Eq. (28) into Eq. (29) and applying a variational statement yields the
following equation

oT1= [ (80 TRNaddr— f (009 (/e 0

Three different types of shape functions are introduced to describe the behavior of the beam. For the
axial displacement U, a four-node Lagrangian representation is used. The cross-section rotations ( 8,
and B,) and the transverse deformation ( ¥V and W ) are interpolated using a three-node Lagrangian
shape function. For twist deformation ¢ and its derivative ¢ ,, a two-node Hermite shape function is

employed to satisfy the C'-continuity at each extremities of an element. These yield a total of 20
degrees of freedom for each finite element. Considering these finite element representation into the
energy expression Eq. (30), we obtain the following set of finite element beam equations:

{KKqcl={F¢} @8

where [K] and {Fg are the finite element system of stiffness matrix and load vector, respectively,
and {q¢} is the generalized displacement vector for the beam.

3. Results and Discussions

Numerical simulations are carried out for coupled composite blades with two-cell airfoil section. Fig. 2
shows the schematic of the two-cell blade section fabricated and tested by Chandra and Chopra.m The
blade is clamped at one end and warping restrained at both ends. The geometry and the material
properties of the blade are given in Table 1. Blades with three different ply layups representing
bending—torsion couplings are studied. Table 2 shows the details of the layup used in the blades.

Fig. 3 shows the comparison results for the tip bending slope and induced tip twist of the
bending-torsion coupled blade (Blade 1) under unit tip bending load. As is given in Table 2, Blade 1
consists of 15° spar and ®£15° skin. The present results are compared with the experimental test data
as well as the theoretical results obtained by Chandra and Chopra.@ As can be seen in Fig. 3, the
predictions of the present method are in good agreement with experimental results. The responses
obtained by the present method are within 45% of the test results. The difference between the current
predictions and Ref. 3 is due mainly to the fact that Chandra and Chopram used the zero-in-plane strain

assumption ( 7= x,=0) for the constitutive relations, while in the present approach, the zero hoop
stress flow assumption ( Ni=0) is used. Fig. 4 presents the tip twist and induced bending slope for
Blade 1 under unit tip torsional load. There is a good correlation between the present theory and
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experimental results.

Figs. 5 and 6 show the structural responses of the 30 ° blade (Blade 2) under unit tip bending and
torsional loads, respectively. The present predictions are seen to be in a good agreement with
experimental results. The error is within 7% of the test results. The results obtained by the present
mixed method show better correlations with the experimental results than those obtained by the stiffness
method of Chandra and Chopra(s’. Figs. 7 and 8 show results of Blade 3 which has ply angles of 45
degrees. For this blade also, the predicted responses are within 5% of the experimental results. Note the
increase in bending slope (over 30%) and decrease in induced twist (over 50%) for this blade in
comparison with the previous blades (Blade 1 and 2). The decrease in bending stiffness with respect to
the increase in ply angles causes this aspect. The existence of bending-torsion couplings reduces the
direct bending stiffness in some degree.

4. Concluding Remarks

In the present work, a closed-form formulation for coupled composite blades with multiple cell sections
has been developed. The analysis model includes the effects of elastic couplings, shell wall thickness,
transverse shear deformation, torsion warping and constrained warping. The beam force-displacement
relations of the blade were obtained by using the Reissner’s semi-complementary energy functional. The
resulting (7x7) stiffness matrix idealizes the blade at a Timoshenko level of approximation for bending
and shear and Vlasov for torsion. It is shown that the elements of the stiffness matrix are modified by
the shear related terms and shear correction terms. The theory has been correlated with experimental
test data and detailed finite element results for coupled composite beams and blades with single-cell
box-sections and two-cell airfoils. Good correlation of responses with experimental results was obtained
for all the test cases considered. The error is less than 7% for bending-torsion coupled blades.
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Table. 1 Geometry and material properties of composite blades.

Properties Values Dimension Values
Ey 131 GPa (19 x10°% psi)|  Airfoil type NACA 0012
6. -
En 93 GPa (135 x107psD | [ engrh 641.4 mm (2525 in)
G 586 GPa (0.85 x10°psi) :
Chord 76.2 mm (3 in)
Viz 0.40 -
Ply thickness | 0.127 mm (0.005 in) |Airfoil thickness| 9.144 mm (0.36 in)

Table. 2 Lay-up cases of bending-torsion coupled composite blades.

Spar
Cases Web Skin
Top Flange | Bottom Flange
Blade 1 [0/15], [0/=15]y | [0/%15/0], | [15/=15]
Blade 2 [0/3014 [0/ —3014 [0/£30/01, [30/—30]
Blade 3 [0/451, [0/ —451, [0/£45/0], [45/ —45]
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