• Title/Summary/Keyword: 전단공정

Search Result 337, Processing Time 0.022 seconds

Enhancement of the Mechanical Properties of CNT Fibers Synthesized by Direct Spinning Method with Various Post-Treatments (직접 방사법으로 합성된 탄소나노튜브 섬유의 기계적 특성 향상)

  • Kim, Jin-seok;Park, Junbeom;Kim, Seung Min;Kwac, L.K;Hwang, Jun Yeon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.239-243
    • /
    • 2015
  • Recent studies regarding the properties of carbon nanotubes (CNT) have made remarkable progress in CNT fibers research. However no CNT fibers showed the properties of CNTs because CNTs in fibers have weak interfacial bonding with low shear modulus in the pristine form. Thus, it is upmost interest to develop and employ post-production treatments to the CNT fibers that would potentially improve their properties. In this study, post-treatments resulted in improvement of strength of CNT fibers up to 40%.

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability - (티타늄 판재의 파이버 레이저 용접시 공정변수에 따른 용접특성 (II) - 입열량 제어에 따른 영향 -)

  • Kim, Jong Do;Kim, Ji Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1055-1060
    • /
    • 2016
  • Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of $0.5mm^t$ pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

A study on the runner system for filling balance in multi-cavity injection molds (다수 캐비티 사출금형에서의 균형 충전을 위한 러너 시스템 연구)

  • Jeon, Kang-Il;Noh, Seung-Kyu;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1581-1588
    • /
    • 2011
  • In this study, flow characteristics in a multi-cavity injection molding process were investigated. One of main problems occurred in the multi-cavity molding is a flow imbalance among cavities since it affects physical properties and quality of products. Charge imbalance is caused by the uneven shear stress. Therefore, changes in viscosity affect the physical properties of resin and injection conditions differ in the filling imbalance phenomenon. Through, this study focus on experimental studies of flow imbalance for PC and PP resin occurring in a balanced delivery system. Experimental results were compared with CAE results. By experimental and CAE analysis, main cause for the flow imbalance is temperature distribution in cross section of runner. New runner system with a simple change of runner shape was suggested to avoid the flow imbalance. A series of simulation to confirm feasibility of Volume Runner's effects was conducted using injection molding CAE.

Analysis of Preconcentration Dynamics inside Dead-end Microchannel (막다른 미세유로 내부의 농축 동역학 분석)

  • Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.155-161
    • /
    • 2023
  • Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel's applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.

Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal (다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Modeling of Extrusion for Pectin Extraction from Apple Pomace (사과박의 펙틴 추출을 위한 압출 공정 모형화)

  • Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1011-1016
    • /
    • 1999
  • This study was performed to search a physical method having high yield and quality and minimum environmental pollution for extraction of pectin from apple pomace. Based on the physical solubilization of plant cell wall under the condition of high temperature, pressure and shearing stress, apple pomace was treated by a corotating intermeshing type twin-screw extruder with the diameter-to-length ratio of 1/20. The specific mechanical energy of extruder was introduced as system parameter for extrusion process modeling and the shaft speed, feed rate and moisture content as process variables. The yield, average molecular weight and galacturonic acid content of water-soluble polysaccharides obtained by extrusion were, respectively, modeled with the linear functions of the system parameter which was of the form as a linear function of process variables. The specific mechanical energy increased with increase of shaft speed and with decrease of feed rate and moisture content. Out of process variables, moisture content had the greatest effect on specific mechanical energy. The yield increased with increase of specific mechanical energy while the average molecular weight and galacturonic acid content increased with its decrease. In aspects of yield and quality of pectin, the results from this study showed the possibility to replace a traditional acidic method with the extrusion treatment of this study.

  • PDF