DOI QR코드

DOI QR Code

Analysis of Preconcentration Dynamics inside Dead-end Microchannel

막다른 미세유로 내부의 농축 동역학 분석

  • Hyomin, Lee (Department of Chemical Engineering, Jeju National University)
  • 이효민 (제주대학교 화학공학과)
  • Received : 2022.08.28
  • Accepted : 2022.10.19
  • Published : 2023.02.01

Abstract

Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel's applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.

이온 농도 분극 현상은 전기투석, 전기화학 전지에서 일어나는 기초 이동 현상일 뿐만 아니라, 생체 물질 전처리용 농축 장치의 핵심 기작으로 활용된다. 외부 인가 전압에 의해 발생한 이온 농도 분극 현상은 분석 물질의 농축에 필요한 국소적으로 증폭된 전기장을 통해 물질의 농축을 가능케 한다. 그러나 기존의 농축 기작은 농축의 평형 지점이 불분명하며, 농축 플러그의 유체역학적 불안정성의 두가지 문제점을 가지고 있다. 본 연구에서는, 이온 농도 분극 기반의 농축 기작의 한계점을 해결하기 위해 막다른 미세유로와 양이온 교환막을 사용한 농축 방법을 연구하였다. 막다른 미세유로의 공간 제약적 구조를 통해 유체역학적 안정성을 확보할 수 있으며, 분석 물질의 농축 지점이 이온 공핍 영역의 충격 전단과 일치함을 수치적으로 확인하였다. 또한 농축 공정의 핵심 인자로써 인가 전압과 미세유로의 체적 전하 농도를 변화시켜가며, 농축 물질의 전기동역학적 거동을 연구하였다. 본 연구의 결과는 현장 진단 검사(point-of-care)와 같은 초단시간의 농축을 필요로 하는 미세유체역학 장치에 유효한 기작으로 사용될 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2021학년도 제주대학교 교원성과지원사업에 의하여 연구되었습니다.

References

  1. Kwak, R., Pham, V. S., Lim, K. M. and Han, J., "Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices," Phys. Rev. Lett., 110, 114501(2013).
  2. Bai, P., Li, J., Brushett, F. R. and Bazant, M. Z., "Transition of Lithium Growth Mechanisms in Liquid Electrolytes," Energy & Environmental Science, 9, 3221-3229(2016). https://doi.org/10.1039/c6ee01674j
  3. Deen, W. M., Analysis of Transport Phenomena. (Oxford University Press, 2012).
  4. Kim, S. J., Li, L. D. and Han, J., "Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel," Langmuir, 25, 7759-7765(2009). https://doi.org/10.1021/la900332v
  5. Kim, S. J., Song, Y.-A. and Han, J., "Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications," Chem. Sov. Rev., 39, 912-922(2010). https://doi.org/10.1039/b822556g
  6. Son, S. Y., Lee, S., Lee, H. and Kim, S. J., "Engineered Nanofluidic Preconcentration Devices by ion Concentration Polarization," BIOCHIP J., 1-11(2016).
  7. Li, M. and Anand, R. K., "Recent Advancements in Ion Concentration Polarization," Analyst, 141, 3496-3510(2016). https://doi.org/10.1039/c6an00194g
  8. Choi, J. et al., "Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization," BIOCHIP J., 14, 100-109(2020). https://doi.org/10.1007/s13206-020-4109-3
  9. Kim, K., Kim, W., Lee, H. and Kim, S. J., "Stabilization of Ion Concentration Polarization Layer Using Micro Fin Structure for High-throughput Applications," Nanoscale, 9, 3466-3475(2017). https://doi.org/10.1039/C6NR08978J
  10. Lee, H. et al., "dCas9-mediated Nanoelectrokinetic Direct Detection of Target Gene for Liquid Biopsy," Nano Lett., 18, 7642-7650(2018). https://doi.org/10.1021/acs.nanolett.8b03224
  11. Andersen, M. B., Wang, K. M., Schiffbauer, J. and Mani, A., "Confinement Effects on Electroconvective Instability," Electrophoresis, 38, 702-711(2017). https://doi.org/10.1002/elps.201600391
  12. Schiffbauer, J., Demekhin, E. A. and Ganchenko, G., "Electrokinetic Instability in Microchannels," Phys. Rev. E, 85, 055302(2012).
  13. Lee, S., Hyun, C. H. and Lee, H., "Dynamics Transition of Electroconvective Instability Depending on Confinement Effect," Korean Chem. Eng. Res., 59, 626-631(2021). https://doi.org/10.9713/KCER.2021.59.4.626
  14. Mani, A. and Bazant, M. Z., "Deionization Shocks in Microstructures," Phys. Rev. E, 84, 061504(2011).
  15. Dydek, E. V. et al., "Overlimiting Current in a Microchannel," Phys. Rev. Lett., 107, 118301(2011).
  16. Dydek, E. V. and Bazant, M. Z., "Nonlinear Dynamics of Ion Concentration Polarization in Porous Media: The Leaky Membrane Model," AIChE Journal, 59, 3539-3555(2013). https://doi.org/10.1002/aic.14200
  17. Kim, W. et al., "Rapid and Accurate Nanoelectrokinetic Diagnosis of Drug-resistant Bacteria," Biosens. Bioelectron., 213, 114350 (2022).
  18. Hong, S. A., Kim, Y.-J., Kim, S. J. and Yang, S., "Electrochemical Detection of Methylated DNA on a Microfluidic Chip with Nanoelectrokinetic Pre-concentration," Biosens. Bioelectron., 107, 103-110 (2018). https://doi.org/10.1016/j.bios.2018.01.067
  19. Masliyah, J. H. and Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena. (Wiley, 2006).
  20. Guo, W. et al., "Pressure-Driven Filling of Closed-End Microchannel: Realization of Comb-Shaped Transducers for Acoustofluidics," Physical Review Applied, 10, 054045(2018).
  21. Kirby, B. J. and Hasselbrink, E. F., "Zeta Potential of Microfluidic Substrates: 2. Data for Polymers," Electrophoresis, 25, 203-213(2004). https://doi.org/10.1002/elps.200305755