• Title/Summary/Keyword: 전기IT

Search Result 23,855, Processing Time 0.051 seconds

Characteristics Analysis of Flux-Reversal Machine considering BEMF Current (역기전력 전류를 고려한 자속 역전식 기기의 특성 해석)

  • Kim Tae Heoung;Lee Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.709-717
    • /
    • 2004
  • Flux-reversal machine (FRM) is a new brushless doubly salient permanent magnet machine. Its operation is similar to that of the brushless DC motor, so it can be driven by 120 degree square wave voltage and use PWM pulse patterns in two-phase feeding scheme to control the speed. In this driving method, the back electromotive force (BEMF) current in the open phase is generated by the BEMF. It can be appeared or disappeared according to the changes of the neutral voltage of the machine. In this paper, the time-stepped voltage source finite-element method taking BEMF current into account is proposed. Its influences on the performances of the FRM are also investigated. To prove the propriety of the proposed analysis method, a Digital Signal Processor (DSP) installed experimental devices are equipped and the experiment is performed.

The Study of SRM on the Single Pulse Switching Control With Maximum Energy Ratio (SRM의 최대 에너지비를 갖는 단일 펄스 스위칭방식에 관한 연구)

  • Park, Seong-Jun;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.165-173
    • /
    • 2002
  • The goal of this paper is optimal switching angle of switched reluctance motor drive system fur maximum energy ratio. A new magnetizing method with a low-frequency increasing the energy conversion ratio that is related to the efficiency of motor is proposed. As the results, it improved the efficiency about 2[%]. And a torque ripple is also sufficiently reduced compared with that of the conventional approach. In order tn start softly regardless of large ripple torque, the profile of phase current is predicted by the ANFIS, and current control mode was adapted when it is operated under the starting speed. Variable implementations en the fields will guarantee the more practical drive system.

A Study on the Enhancement of Emission Efficiency of an Organic EL Devices Using the RF Plasma (RF 플라즈마를 이용한 유기 EL소자의 발광 효율에 관한 연구)

  • 박상무;김형권;신백균;임경범;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.400-406
    • /
    • 2003
  • Efficient electrodes are devised for organic luminescent device(OLED). ITO electrode is treated with $O_2$ plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. In the case of device inserted the buffer layer by using the plasma polymerization after $O_2$ plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic are made in the emitting layer. Therefore it realized the device capability of two times in the aspect of luminous efficiency than the device which do not be inserted the buffer layer. Experiments are limited to the device that has the structure of TPD/$AIq_3$, however, the aforementioned electrodes can similarly applied to the organic luminous device and the Polymer luminous device.

A Study on the New Control Scheme of Class-I Inverter for IH-Jar Applications with Clamped Voltage Characteristics Using Pulse frequency Modulation (주파수 변조 기법을 이용한 전압 클램프 특성을 갖는 유도가열용 Class-E 인버터의 새로운 제어에 관한 연구)

  • 이동윤;최영덕;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.133-139
    • /
    • 2003
  • In this paper, a new control scheme of Class-E inverter for Induction Heating (IH) Jar applications with clamped voltage characteristics using Pulse-Frequency-Modulation (PFM) is introduced. To reduce the voltage stress of switch, the proposed PFM control scheme doesn't need any auxiliary circuit in comparison to a family of Active Clamped Class-E (ACCE) inverter. It can decrease voltage stress of switch through modulation of switching frequency. The Class-E inverter using the proposed control scheme has the advantage of not only the same output power when it is compared with a Hybrid-Active Clamped Class-E (Hybrid-ACCE) inverter but also Zero-Voltage-Switching (ZVS), which are characteristics of conventional Class-E and ACCE inverter. The control principles and analysis of proposed method are explained in detail and its validity is verified through simulation and experimental results.

Electro-optic Characteristics of Hybrid-aligned Nematic Cell Using Novel Tilt Angle Control Method (새로운 틸트제어법을 이용한 하이브리드 네마틱 액정 셀의 전기 광학특성)

  • Kim, Kang-Woo;Hwang, Jeoung-Yeon;Kim, Jong-Hwan;Kim, Young-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.575-578
    • /
    • 2004
  • In this study, we designed HAN(hybrid-aligned nematic) cell using novel tilt angle control method. It was possible to make novel HAN cell using a single polyimide by hot plate baking method. This new HAN cells showed slower response time as compared with conventional HAN cell. However, the alignment state and V-T curve of HAN cell using novel method were acceptable. Also, it showed better C-V characteristic than that of conventional HAN cell.

  • PDF

Electrical Characteristics of Devices with Material Variations of PMD-1 Layers (PMD-1 층의 물질변화에 따른 소자의 전기적 특성)

  • Seo, Yonq-Jin;Kim, Sang-Yong;Yu, Seok-Bin;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1327-1329
    • /
    • 1998
  • It is very important to select superior inter-layer PMD(Pre Metal Dielectric) materials which can act as penetration barrier to various impurities created by CMP processes. In this paper, hot carrier degradation and device characteristics were studied with material variation of PMD-1 layers, which were split by LP-TEOS, SR-Oxide, PE-Oxynitride, PE-Nitride, PE-TEOS films. It was observed that the oxynitride and nitride using plasma was greatly decreased in hot carrier effect in comparison with silicon oxide. Consequently, silicon oxide turned out to be a better PMD-1 material than PE-oxynitride and PE-nitride. Also, LP-TEOS film was the best PMD-1 material Among the silicon oxides.

  • PDF

A Study on Electrical Properties of Pressboard Insulating Paper (프레스 보드 절연지의 전기물성에 관한 연구)

  • Kim, G.Y.;Eom, S.W.;Ahn, M.S.;Kang, D.P.;Yun, M.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.35-38
    • /
    • 1993
  • Pressboard is used for insulation oil-immersed equipment such as transformer. It's low cost, good electrical properties when immersed in oil, ease of storage and installation, and general reliability have made it virtually a universal choice. This study has examined fabricating specimen and specimen characteristics of pressboard.

  • PDF

Design and Analysis of SCR on the SOI structure for ESD Protection (ESD 보호를 위한 SOI 구조에서의 SCR의 제작 및 그 전기적 특성 분석)

  • Bae, Young-Seok;Chun, Dae-Hwan;Kwon, Oh-Sung;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.10-10
    • /
    • 2010
  • ESD (Electrostatic Discharge) phenomenon occurs in everywhere and especially it damages to semiconductor devices. For ESD protection, there are some devices such as diode, GGNMOS (Gate-Grounded NMOS), SCR (Silicon-Controlled Rectifier), etc. Among them, diode and GGNMOS are usually chosen because of their small size, even though SCR has greater current capability than GGNMOS. In this paper, a novel SCR is proposed on the SOI (Silicon-On-Insulator) structure which has $1{\mu}m$ film thickness. In order to design and confirm the proposed SCR, TSUPREM4 and MEDICI simulators are used, respectively. According to the simulation result, although the proposed SCR has more compact size, it's electrical performance is better than electrical characteristics of conventional GGNMOS.

  • PDF

Process Improvement of PCB Electric Circuit Pattern by Ink Drop Jetting Control and Characteristics Analysis of Industrial Inkjet Piezoelectric Print Head (산업용 잉크젯 압전프린트 헤드의 특성해석 및 잉크 망점제어에 의한 PCB 전기회로패턴 공정개선)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • This paper was analyzed the characteristics of piezoelectric inkjet print head using finite element method(FEM). It showed the bending node driving of piezoelectric and relation theory principle consider piezoelectric material characteristics and ink characteristics. From such result we were had the piezoelectric head design and manufacture. It got a this head characteristics through experiment, we confirmed that proper voltage control is possible to through ink drop control experiment of piezoelectric print head. This paper was obtained the suitable ink jetting characteristics that manufacture the control circuit and piezoelectric inkjet print head. This practice product was applied to improvement of PCB electric circuit pattern by etching resist ink that PCB manufactured to complex process over traditional 6 stages can be simpled to 1 stage by inkjet printing technology.

Solar Water Splitting Based on Organic Metal Halide Perovskites (유기 금속 할라이드 페로브스카이트에 기반한 태양광 물분해)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • In this review, I have summarized the solar water splitting research based on the organic metal halide perovskite material, which has recently been spotlighted worldwide. Significantly, to date, recent reports have been categorized as photovoltaic-electrolyzer configuration and integrated photoelectrolysis. Research in this field is still in its early stages, and it is necessary to develop an effective protection film and manufacture a high-voltage tandem cell in the future.