• Title/Summary/Keyword: 전기 차량

Search Result 1,282, Processing Time 0.025 seconds

Development of 3D Radiation Position Identification System of Multiple Radiation Sources using Plastic Scintillator and NaI(TI) Detector (플라스틱 Scintillator와 NaI(TI) 검출기를 이용한 다수의 방사선원 위치를 3차원으로 판별하는 측정시스템 개발)

  • Kwak, Dong-Hoon;Ko, Tae-Young;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.638-644
    • /
    • 2018
  • In this paper, we develop a measurement system that uses 3D Scintillator and NaI(TI) Detector to 3-dimensionally identify the location of multiple radiation sources in moving vehicle loads. The radiation measurement system consists of radiation measurement (plastic scintillator), 2-channel Pulse Counter Board, nuclide analysis (NaI(TI) detector) and 1 channel MCA Board. The source locator algorithm calculates the coordinate value of the ratio of the CPS value($1/r^2$) of the source according to the angle(${\theta}$) in inverse proportion to the square of the distance(X, Y) through the SVM classification. The coordinate values are input every predetermined period of the spectrum, and after analyzing the spectrum per unit cycle, the position of the nuclide at the time is calculated by determining whether or not the nuclide is present in the remaining part except for the background area. As a result of the position discrimination test, the error within the international standard of ${\pm}1m$ was shown. Thus, the utility of the proposed system has been demonstrated.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake (전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Choon-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.581-588
    • /
    • 2020
  • This study examined a brake pad wear compensation method for an Electro-Mechanical Brake (EMB) using the braking test device. A three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) was applied to drive the actuator of an EMB. Current control, speed control, and position control were used to control the clamping force of the EMB. The wear compensation method was performed using a software algorithm that updates the motor model equation by comparing the motor output torque current with a reference current. In addition, a simple first-order motor model equation was applied to estimate the output clamping force. The operation time to the maximum clamping force increased within 0.1 seconds compared to the brake pad in its initial condition. The experiment verified that the reference operating time was within 0.5 seconds, and the maximum value of the clamping force was satisfied under the wear condition. The wear compensation method based on the software algorithm in this paper can be performed in the pre-departure test of rolling stock.

The Performance Improvement of Hybrid Energy Harvesting Block and the Evaluation on Power Generation Performance (하이브리드 에너지하베스팅 블록의 성능개선 및 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The aim of this study was to improve the performance of hybrid energy harvesting block merge the vibrations and the pressure developed in the previous study. The power generation performance of the energy block improved in this manner was measured and compared with the energy performance of the products previously developed. In previous models, the center has placed a piezoelectric, the two sides had arranged a vibration applying electromagnetic inducing type. Improved model was disposed three in a row of three unit modules for one block. We change the design in the following way. That is, a unit module has been placed the upper piezoelectric body, the lower portion were arranged three electron donation. In laboratory conditions, the power generation performance evaluation results of the improved energy block is as follows. Once when the vibration, power generation was determined to 1.066W. When compared with previous studies, and power generation performance is improved up to 235%. When the vibration in a row 5, power generation was determined to 1.830W. When compared with previous studies, the performance is improved to 177%. The purpose of developing a hybrid energy block is intended to produce electricity by the pressure and vibration when a vehicle passes through the energy block installed in the car park the mouth portion. Electricity produced will try to take advantage of for the purpose of operating a guiding beacon and LED signage in the parking lot entrance. Therefore, it is determined that there is a need in the experiment to compare the performance of the power generation in the field.

Implementation of Monitoring System of the Living Waste based on Artificial Intelligence and IoT (AI 및 IoT 기반의 생활 폐기물 모니터링 시스템 구현)

  • Kim, Sang-Hyun;Kang, Young-Hoon;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.302-310
    • /
    • 2020
  • In this paper, we have implemented the living waste analysis system based on IoT and AI(Artificial Intelligence), and proposed effective waste process and management method. The Jeju location have the strong point to devise a stratagem and estimate waste quantization, rather than others. Especially, we can recognized the amount variation of waste to the residence people compare to the sightseer number, and the good example a specific waste duty. Thus this paper have developed the IoT device for interconnecting the existed CCTV camera, and use the AI algorithm to analysis the waste image. By using these decision of image analysis, we can inform their deal commend and a decided information to the map of the waste cars. In order to evaluate the performance of IoT, we have experimented the electromagnetic compatibility under a national official authorization KN-32, KN61000-4-2~6, and obtained the stable experimental results. In the further experimental results, we can applicable for an data structure for precise definition command by using the simulated several waste image with artificial intelligence algorithm.

Serviceability Assessment of a K-AGT Test Bed Bridge Using FBG Sensors (광섬유 센서를 이용한 경량전철 교량의 사용성 평가)

  • Kang, Dong-Hoon;Chung, Won-Seok;Kim, Hyun-Min;Yeo, In-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2007
  • Among many types of light rail transits (LRT), the rubber-tired automated guide-way transit (AGT) is prevalent in many countries due to its advantages such as good acceleration/deceleration performance, high climb capacity, and reduction of noise and vibration. However, AGT is generally powered by high-voltage electric power feeding system and it may cause electromagnetic interference (EMI) to measurement sensors. The fiber optic sensor system is free from EMI and has been successfully applied in many applications of civil engineering. Especially, fiber Bragg grating (FBG) sensors are the most widely used because of their excellent multiplexing capabilities. This paper investigates a prestressed concrete girder bridge in the Korean AGT test track using FBG based sensors to monitor the dynamic response at various vehicle speeds. The serviceability requirements provided in the specification are also compared against the measured results. The results show that the measured data from FBG based sensors are free from EMI though electric sensors are not, especially in the case of electric strain gauge. It is expected that the FBG sensing system can be effectively applied to the LRT railway bridges that suffered from EMI.

High Quality Video Streaming System in Ultra-Low Latency over 5G-MEC (5G-MEC 기반 초저지연 고화질 영상 전송 시스템)

  • Kim, Jeongseok;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • The Internet including mobile networks is developing to overcoming the limitation of physical distance and providing or acquiring information from remote locations. However, the systems that use video as primary information require higher bandwidth for recognizing the situation in remote places more accurately through high-quality video as well as lower latency for faster interaction between devices and users. The emergence of the 5th generation mobile network provides features such as high bandwidth and precise location recognition that were not experienced in previous-generation technologies. In addition, the Mobile Edge Computing that minimizes network latency in the mobile network requires a change in the traditional system architecture that was composed of the existing smart device and high availability server system. However, even with 5G and MEC, since there is a limit to overcome the mobile network state fluctuations only by enhancing the network infrastructure, this study proposes a high-definition video streaming system in ultra-low latency based on the SRT protocol that provides Forward Error Correction and Fast Retransmission. The proposed system shows how to deploy software components that are developed in consideration of the nature of 5G and MEC to achieve sub-1 second latency for 4K real-time video streaming. In the last of this paper, we analyze the most significant factor in the entire video transmission process to achieve the lowest possible latency.

Analysis of domestic and foreign future automobile research trends based on topic modeling (토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로)

  • Jeong, Ho Jeong;Kim, Keun-Wook;Kim, Na-Gyeong;Chang, Won-Jun;Jeong, Won-Oong;Park, Dae-Yeong
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.463-476
    • /
    • 2022
  • After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

A Decreasing Trend of Industrial Injuries at a Large Scale Textile Company (대기업섬유업체(大企業纖維業體)에 있어서의 산업재해감소추이(産業災害減少推移))

  • Hong, Soon-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.17 no.1
    • /
    • pp.65-73
    • /
    • 1984
  • To assess the status of industrial injuries, a large scale textile company located around Taegu city was selected. And it was investigated from January 1981 to December 1982. After the department for workers safety was established, frequency rate of injury was 9.70 in 1981 and 4.15 in 1982, incidence rate per 1,000 workers was 27.11 in 1981 and 12.96 in 1982, and then, intensity rate was 0.33 in 1981 and 0.01 in 1982. The average duration of working loss was 36.64 days in 1981 and 3.34 in 1982. The incidence rate per 100 workers was 2.3 in annual average, 2.7 in men and 2.0 in women. The monthly incidence rate per 1,000 workers was highest as 3.6 in June; daily incidence rate, lowest as 1.8 on Sunday; and the highest as 14.7 from 10 to 12 o'clock in a day. The frequency by injured parts of body was highest as 42.3% on finger and 14.4% on the other part of hand, and the lower extremities as 14.4% followed. According to the kind of injuries, the laceration was the highest as 46.1%, the next was contusion as 15.4%, and the third was superficial injuries as 6.7%, According to the cause of injuries, the machinery accidents showed the highest as 47.1% and the accidents due to hand tool followed as 16.3%. By underlying cause of injuries, the environmental factors were 13.5% and the human factors 86.5%. The psychologic factors among human factors were the most common as 60.6%.

  • PDF