DOI QR코드

DOI QR Code

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil

해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성

  • Oh, Sewook (Department of Construction & Disaster Prevention Engineering, Kyungpook National University) ;
  • Bang, Seongtaek (Department of Construction & Disaster Prevention Engineering, Kyungpook National University)
  • Received : 2020.07.15
  • Accepted : 2020.08.21
  • Published : 2020.09.01

Abstract

The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

지반의 하부에 설치되는 지하매설물은 중요한 토목구조물로서 상·하수도관, 지중전력선, 각종 통신선로, 도시가스관 등이 이에 해당한다. 이런 지중매설물들은 시공 시 집중강우, 차량하중 등과 같은 외부적인 요인에 의해서 위험에 노출될 수 있고 이로 인한 피해가 발생할 수 있어 적절한 뒤채움재의 선정과 시공이 중요하다. 현재 주로 사용하는 공법으로는 지하매설물 주변을 흙으로 메우고 다짐을 하는 방법이 사용되고 있는데 이는 매설관 하부의 다짐이 어렵고 다짐효율이 떨어져서 지하매설물의 안정성을 저감시키고 이로 인해 각종 파손이 발생한다. 또한 개착 시 원지반 교란에 따라 지반의 강도가 저하되고 시공 과정이 복잡하며 공기가 길어져 공사비가 증가하는 등의 단점이 있다. 이러한 문제를 해결하는 방법 중 하나가 유동성 채움재를 활용하는 것이다. 유동성 채움재는 자기 수평능력, 자기다짐, 유동성, 인위적인 강도조절, 유지보수를 위한 재굴착이 가능한 저강도 발현 등의 장점을 가지고 있다. 본 연구에서는 지하매설물을 설치한 후 되메움을 하는 재료로서 해양점토와 고화재 및 현장에서 발생하는 현장토를 활용한 유동성 채움재의 특성을 규명하기 위하여 일축압축강도 시험과 유동성 시험을 수행하였으며, 동결에 의한 강도 특성을 파악하기 위하여 동결융해시험을 수행하였고 채움재가 지중배관의 부식에 미치는 영향을 검토하기 위하여 전기비저항시험과 pH시험을 수행하였다.

Keywords

References

  1. ASTM D 6103 (2004), Standard test method for flow consistency of controlled low strength material (CLSM), West conshohocken, PA.
  2. Bae, Y. S., Kim, K. T. and Lee, S. U. (2017), The road subsidence status and safety improvement plans, Journal of the Korea Academy Industrial Cooperation Society, Vol. 18, No. 1, pp. 545-552. https://doi.org/10.5762/KAIS.2017.18.1.545
  3. Go, D. G. (2017), Study on fundamental characteristics of inorganic filler for emergency repair of ground sink, Master's thesis, Korea National University of Transportation, pp. 1-17.
  4. Hook, W. and Clem, D.A. (1998), Innovative uses of controlled low strength material(CLSM) in colorado, The Design and Application of Controlled Low-Strength Materials (Flowable Fill), ASTM SPT 1331, A. K. Howard and J. L. Hitch, Eds., American Society for Testing and Materials, pp. 137-150.
  5. Lee, H. J. and Yim, H. J. (2017), Setting time evaluation of concrete using electrical resistivity measurement, Journal of the Korea Concrete Institute, Vol. 29, No. 4, pp. 361-369. https://doi.org/10.4334/JKCI.2017.29.4.361
  6. Oh, G. D. and Kim, D. H. (2010), A experimental study on the determination of construction method of controlled low-strength material accelerated flow ability using surplus soil for underground power line, Journal of the Korean Recycled Construction Resources Institute, Vol. 11, pp. 84-93.
  7. Report by ACI Committee 229 (1994), Controlled low strength materials, Concrete International, July, pp. 55-64.
  8. Ryu, Y. D., Kwak, C. S., Ryu, Y. J. and Lee, S. K. (2008), A Study on the improvement of the standards of backfill materials for underground pipelines carrying natural gas, Journal of the Korean Institute of Gas, Vol. 12, No. 3, pp. 75-80.
  9. Ryu, Y. S., Han, J. G., Chae, W. R., Koo, J. S. and Lee, D. Y. (2015), Development of rapid hardening backfill material for reducing ground subsidence, Journal of Korean Geosynthetics Society, Vol. 14, No. 3, pp. 13-20. https://doi.org/10.12814/jkgss.2015.14.3.013
  10. Seo, C. B. (2009), A study on stiffness evaluation technique for controlled low-strength materials as backfill, Master's thesis, Paichai University, pp. 4-20.
  11. Brewer, W. E. (1994), Durability factors affecting CLSM, SP 150-3, American Concrete Institute, Detroit, pp. 39-51.
  12. Wenner, F. (1915), A method of measuring earth resistivity, Journal of the Franklin Institute, Vol. 180, No. 3, pp. 373-375. https://doi.org/10.1016/S0016-0032(15)90298-3
  13. Yoo, C. S. and Shin, B. N. (2011), Effect of cyclic freezingthawing on compressive strength of decomposed granite soils, Journal of Korean Geosynthetics Society, Vol. 10, No. 1, pp. 19-28. https://doi.org/10.12814/JKGSS.2011.10.1.019