• Title/Summary/Keyword: 전기 사용량

Search Result 344, Processing Time 0.024 seconds

Development of Nitrogen Cooling Equipment for Personalized Local Area (개인 맞춤형 국소부위 질소 냉각 장비 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.913-916
    • /
    • 2020
  • In this paper, we propose the development of nitrogen cooling equipment for personalized local area. The proposed equipment consists of a cold air supply module, a body, and nitrogen injection with the following characteristics. First, it automatically controls the amount and time of cold air supply by utilizing information measuring skin temperature with volumetric temperature sensors, so it can have a competitive edge in function by ensuring complete safety. Second, if the distance measuring sensor is applied to the skin for more than a certain distance, it can block the cold air or control the discharge of nitrogen in conjunction with the control GUI to improve the efficiency of higher cooling therapy while providing safe management. Third, by installing a control module that can control the supply of nitrogen, the cost of maintenance can be minimized by minimizing the loss of nitrogen. Experiments at an external testing agency to evaluate the performance of the proposed equipment showed that the accuracy of the temperature sensor was measured in the range of ±3.8%, which is lower than the world's highest level(±5%), with a range of 110℃ to -160℃ similar to the world's highest level. Distance accuracy was measured in the range of ±3.0%, lower than the world's highest level(±5%), and weight accuracy in the range of ±0.1%, lower than the world's highest level(±5%). In addition, emission control was measured in four stages, higher than the world's highest level(stage 1) and nitrogen use was measured at 0.8L/min below the world's highest(6L/min). Therefore, the effectiveness of the methods proposed in this paper was demonstrated because they produced the same results as the world's highest levels.

The study of Rolled Steel Process Wastewater by Superconducting High Gradient Magnetic Separation (초전도 마그네트를 이용한 고구배 자기분리 열연강판 폐수처리에 관한 연구)

  • Kim, Tea-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Kwon, Jun-Mo;Lee, Nam-Jin;Kim, Young-Hun;Kang, Chae-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.11-11
    • /
    • 2009
  • 종래의 산업폐수 처리기술로는 중금속 함유 폐수에 수용성의 금속염을 첨가하여 가성소다 혹은 소석회를 이용하여 pH를 조정하고 고분자 응집제를 첨가하여 금속의 수산화물을 생성시켜 이를 부상 혹은 침전시켜 Sludge화하여 제거하는 방법이 주로 사용되고 있다. 그 외 질소, 인, 유기물이 함유된 폐수의 경우에는 Biological Oxidation Techniques, 활성탄 흡착방식이 주로 채택되고 있다.[1-3] 이러한 폐수처리기술은 화학약품 사용량이 과다하고 이는 Sludge 생성량을 증대하고 2차 폐수처리가 필요로 하는 경우가 많고, 처리장이 면적이 넓어야 하고 대용량의 Sludge 제거창치가 필요하여 고비용의 처리공정으로 문제점을 가지고 있다.[2-3] 이에 본 연구에서는 이러한 기존 기술의 문제점을 보완할 수 있고 기존 기술로는 완벽하게 처리하기 곤란한 악성 폐수들에 대한 새로운 고도처리기술로 초전도 마그네트를 이용한 고구배 자기분리기술에 대한 기초연구를 하였다. 본 연구에서 사용한 고구배 자기분리 시스템은 무헬륨 전도냉각방식으로 자기분리를 위해 사용한 필터는 SUS 430 재질의 메쉬 형태로 제작하여 실험하였다. 또한, 자기분리 처리를 위한 전처리 공정으로는 응집제를 첨가하여 자기분리 효율을 높이고자 하였다. 자기분리 처리대상수로는 포항제철에 압연 강판에 사용되는 냉각수를 대상으로 자기분리 처리에 대한 효과를 실험하였다. 또한, 자기분리에 대한 특성을 평가하기 위해 강자성의 $Fe_3O_4$ 미세자성분말을 첨가하여 처리수내의 들어있는 유기물질에 대해 자기분리 자장 및 유속에 대한 처리효율을 미치는 영향을 조사하였다. 자기분리 처리는 1~6 Tesla에서 자기필터는 디스크 형태로 다층으로 연속적으로 적층하였으며, 처리유속은 1~4 l/min으로 하였다. 고농도인 처리폐수를 자가분리 인가 자장에 따라 처리하여 고농도에서는 70%, 저농도에서는 98 %까지 처리되었다. 또한, 자기분리용 필터는 SUS 430 재질의 mesh 망을 사용하였으며 인가자장 및 유속변화에 대한 실험 결과 탁도 및 농도는 필터 크기의 영향은 거의 차이가 없었으며 단지 인가자장 및 유속에 따라서 지수적으로 감소하였다. 자기분리된 용액 내 $Fe_3O_4$ 입도 분석 결과 자기분리 이전에 분포하던 $10\sim20\;{\mu}m$의 입자는 거의 제거되었으며 2 ${\mu}m$ 이하의 입자들은 실험 횟수에 따라 점점 직경이 작은 쪽으로 분포가 좁아졌으며, 마그네타이트의 자화율을 분석한 결과 약 0.8 Tesla에서 포화 되었으며 처리수의 탁도 및 농도가 자장에 따라 감소하는 것으 알 수 있었다.

  • PDF

Design and Implementation of Automatic Fan On/Off for Energy Saving (에너지 절감을 위한 선풍기 자동 ON/OFF 기능의 설계 및 구현)

  • Jang, Junewoo;Park, Seongjin;Ko, Hyeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.5-8
    • /
    • 2018
  • Recently, global warming and tropical nights have caused the use of electric fans to explode. Under these circumstances, running the fan for long periods of time is not only a risk of explosion due to overloading the power but also a small amount of electricity and environmental pollution. Therefore, the research was conducted to develop devices that automatically turn fans on and off according to room temperature, reducing the risk of explosion as well as saving energy. This study suggested that electric fans turn on and off automatically and display temperature in mobile applications. The ability to turn on and off allows the fan to turn on itself if the indoor temperature rises above a certain level. Conversely, if the indoor temperature drops below a certain level, the fan should be turned off. Second, the temperature display function checks indoor temperature through mobile applications. The automatic on/off capabilities proposed in this study could contribute to reducing the risk of explosion and saving energy. However, if the indoor temperature rises above a certain temperature even though there is no one inside, the fan can be turned on. The expectation from this study is that the ability of fans to operate and turn off at appropriate temperatures can reduce the risk of explosion, electrical charges, and environmental pollution.

  • PDF

Trend in Research and Development Related to Motors and Permanent Magnets for Solving Rare-earth Resources Problem (희토류 자원문제 해결을 위한 모터 및 영구자석 연구개발 동향)

  • Lee, J.G.;Yu, J.H.;Kim, H.J.;Jang, T.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.58-65
    • /
    • 2012
  • Since Nd-Fe-B magnet was first synthesized in 1983, many new applications have emerged in the past two decades. With regard to motor market, it will expand because of strong energy saving requirements from the automobile and electric application markets. Especially, permanent magnet motors for hybrid and electric vehicles are drawing great attention and the usage of Nd-Fe-B magnets will increase all the more hereafter. There is, however, a serious problem as motors in such eco-friendly cars are said to operate in high temperatures of about $200^{\circ}C$. Nd-Fe-B magnet has a drawback of dramatically decreasing coercive force with the rise of temperature. In order to improve this aspect. the best way is to add dysprosium (Dy) into the magnet. So, Dy has become an essential element for Nd-Fe-B high-performance magnet as it helps to maintain coercive force even at high temperatures. On the other hand, the rare earth resources in the earth crust are eccentrically-located and its majority is produced in China. There is a need to reduce its usage as, especially compared to light rare earth elements as neodymium (Nd) and samarium (Sm), heavy rare earth elements including Dy are unevenly distributed to a dramatic degree, their output low, and their prices are about 10 times that of Nd. The present article includes a summary of the trend in research and development of motors and permanent magnets to solve rare-earth resources problem.

Fabrication of ZrO2 Nano Tube by Atomic Layer Deposition with Exposure Time Control System (전구체 노출 시간을 조절하는 원자층 증착기술에 의한 ZrO2 나노 튜브 제조)

  • Shin, Woong-Chul;Ryu, Sang-Ouk;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.39-39
    • /
    • 2007
  • 원자층 증착(Atomic Layer Deposition: ALD) 방법은 반응물질들을 펄스형태로 챔버에 공급하여 기판표면에 반응물질의 표면 포화반응에 의한 화학적 흡착과 탈착을 이용한 박막증착기술이다. ALD법은 기존의 화학적 기상증착(Chemical Vapor Deposition: CVD)과 달리 자기 제한적 반응(self-limiting reaction) 에 의하여 반응가스가 기판 표면에서만 반응하고 가스와 가스 간에는 반응하지 않는다. 따라서 박막의 조성 정밀제어가 쉽고, 파티클 발생이 없으며, 대면적의 박막 증착시 균일성이 우수하고, 박막 두께의 정밀 조절이 용이한 장점이 있다. 이러한 ALD 방식으로 3차원의 반도체 장치 구조물에 산화막 등을 형성하는 공정에서 중요한 요소 중의 하나는 전구체의 충분한 공급이다. 따라서 증기압이 높은 전구체를 선호하는 경향이 있다. 그러나 증기압이 낮은 전구체를 사용할 경우, 공급량이 부족하여 단차 도포성(step coverage)이 떨어지는 문제가 있다. 원자층 증착 공정에서 전구체를 충분히 공급하기 위해전구체 온도를 증가시키거나 전구체의 공급시간을 늘리는 방법을 사용한다. 그러나 전구체 온도를 상승시키는 경우, 전구체의 변질이나 수명을 단축시키는 문제점을 발생시킬 수 있으며. 전구체를 충분히 공급하기 위하여 전구체의 공급시간을 늘이는 방법을 사용하면, 원하는 박막을 형성하기 위하여 소요되는 공정시간과 전구체 사용량이 증가된다. 본 논문에서는 이러한 문제점을 해결하기 위해 반응기 안에서 전구체 노출 시간을 조절하는 새로운 ALD 공정을 소개한다. 특히 이러한 기술을 적용하면 나노튜브를 성장시키는데 매우 유리하다. 본 연구에서 전구체 노출 시간을 조절하기 위하여 사용된 ALD 장비는 Lucida-D200-PL (NCD Technology사)이며 (TEMA)Zr와 H2O를 사용하여 ZrO2 나노튜브를 폴리카보네이트 위에 성장시켰다. 전구체의 노출 시간은 반응기의 Stop 밸브를 이용하여 조절하였으며, SEM, TEM 등을 이용하여 나노튜브의 균일성과 단차피복성 등의 특성을 관찰하였다. 그 결과 전구체 노출시간을 조절함으로써 높은 종횡비를 갖는 나노튜브를 성장 시킬 수 있음을 확인하였다. 또한 낮은 증기압을 가지는 전구체를 이용하여도 우수한 특성의 나노튜브를 균일하게 성장시킬 수 있었다.

  • PDF

A Study on the Analysis of Electric Energy Pattern Based on Improved Real Time NIALM (개선된 실시간 NIALM 기반의 전기 에너지 패턴 분석에 관한 연구)

  • Jeong, Han-Sang;Sung, Kyung-Sang;Oh, Hae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 2017
  • Since existing nonintrusive appliance load monitoring (NIALM) studies assume that voltage fluctuations are negligible for load identification, and do not affect the identification results, the power factor or harmonic signals associated with voltage are generally not considered parameters for load identification, which limits the application of NIALM in the Smart Home sector. Experiments in this paper indicate that the parameters related to voltage and the characteristics of harmonics should be used to improve the accuracy and reliability of the load monitoring system. Therefore, in this paper, we propose an improved NIALM method that can efficiently analyze the types of household appliances and electrical energy usage in a home network environment. The proposed method is able to analyze the energy usage pattern by analyzing operation characteristics inherent to household appliances using harmonic characteristics of some household appliances as recognition parameters. Through the proposed method, we expect to be able to provide services to the smart grid electric power demand management market and increase the energy efficiency of home appliances actually operating in a home network.

Proposal and Analysis of Primality and Safe Primality test using Sieve of Euler (오일러체를 적용한 소수와 안전소수의 생성법 제안과 분석)

  • Jo, Hosung;Lee, Jiho;Park, Heejin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.438-447
    • /
    • 2019
  • As the IoT-based hyper-connected society grows, public-key cryptosystem such as RSA is frequently used for encryption, authentication, and digital signature. Public-key cryptosystem use very large (safe) prime numbers to ensure security against malicious attacks. Even though the performance of the device has greatly improved, the generation of a large (safe)prime is time-consuming or memory-intensive. In this paper, we propose ET-MR and ET-MR-MR using Euler sieve so it runs faster while using less memory. We present a running time prediction model by probabilistic analysis and compare time and memory of our method with conventional methods. Experimental results show that the difference between the expected running time and the measured running time is less than 4%. In addition, the fastest running time of ET-MR is 36% faster than that of TD-MR, 8.5% faster than that of DT-MR and the fastest running time of ET-MR-MR is 65.3% faster than that of TD-MR-MR and similar to that of DT-MR-MR. When k=12,381, the memory usage of ET-MR is 2.7 times more than that of DT-MR but 98.5% less than that of TD-MR and when k=65,536, the memory usage of ET-MR-MR is 98.48% less than that of TD-MR-MR and 92.8% less than that of DT-MR-MR.

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

Assessment of Environmental Impacts and $CO_2$ Emissions from Soil Remediation Technologies using Life Cycle Assessment - Case Studies on SVE and Biopile Systems - (전과정평가(LCA)에 의한 토양오염 정화공정의 환경영향분석 및 $CO_2$ 배출량 산정 - SVE 및 Biopile 시스템 중심으로 -)

  • Jeong, Seung-Woo;Suh, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • The environmental impacts of 95% remediation of a total petroleum hydrocarbon-contaminated soil were evaluated using life cycle assessment (LCA). LCA of two remediation systems, soil vapor extraction (SVE) and biopile, were conducted by using imput materials and energy listed in a remedial system standardization report. Life cycle impact assessment (LCIA) results showed that the environmental impacts of SVE were all higher than those of biopile. Prominent four environmental impacts, human toxicity via soil, aquatic ecotoxicity, human toxicity via surface water and human toxicity via air, were apparently found from the LCIA results of the both remedial systems. Human toxicity via soil was the prominent impact of SVE, while aquatic ecotoxicity was the prominent impact of biopile. This study also showed that the operation stage and the activated carbon replacement stage contributed 60% and 36% of the environmental impacts of SVE system, respectively. The major input affecting the environmental impact of SVE was electricity. The operation stage of biopile resulted in the highest contribution to the entire environmental impact. The key input affecting the environmental impact of biopile was also electricity. This study suggested that electricity reduction strategies would be tried in the contaminated-soil remediation sites for archieving less environmental impacts. Remediation of contaminated soil normally takes long time and thus requires a great deal of material and energy. More extensive life cycle researches on remedial systems are required to meet recent national challenges toward carbon dioxide reduction and green growth. Furthermore, systematic information on electricity use of remedial systems should be collected for the reliable assessment of environmental impacts and carbon dioxide emissions during soil remediation.