• 제목/요약/키워드: 전기화학 센서

검색결과 345건 처리시간 0.032초

산화환원 화학 종이 단 분자 층으로 화학 흡착된 전극에서의 전기화학적 정류 (Electrochemical Rectification at Electrode Chemically Modified with Redox Active Agents at Monolayer)

  • 이치우;윤정현;오미경
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.43-47
    • /
    • 2007
  • 산화환원 화학 종이 화학적으로 흡착 된 전극에서의 전자 이동 현상은 흡착 화학 종이 전극표면에 흡착 되기 전과는 다르게 흡착 된 산화환원 화학 종의 전자 이동 특성에 전적으로 의존한다. 이러한 전극 표면에서의 전자이동에 관한 기본적인 변화는 전자 이동 현상에 관한 기초 연구를 넘어 전기화학 촉매, 전기화학적 바이오센서, 분자전자공학 등에 유용한 지식이 되고 있다. 본 고에서는 산화환원 화학 종이 자기 조립 막을 형성하여 화학적으로 흡착 된 전극을 사용 할 때 전극/용액 계면에서 관측 되는 전기화학 정류 전류와 전압 사이의 관계에 대한 상관관계를 소개 한다.

바이오센서로서 표면 플라즈몬 공명 (Surface Plasmon Resonance)

  • 구수진
    • 한국생물공학회소식지
    • /
    • 제11권2호
    • /
    • pp.24-34
    • /
    • 2004
  • 센서란 측정 대상물로부터 정보를 검지 또는 측정하여 그 측정량을 인식 가능한 유용한 신호로 변화하는 장치(device)로 정의할 수 있으며, 바이오센서(biosensor)는 생물학적 요소와분석 대상 물질과의 반응에서 나타나는 전기화학적 변화, 열에너지의 변화, 형광 또는 색의 변화 등을 인식 가능한 신호로 변환시켜 주는 장치와 결합하여 제작한 기구를 지칭한다. 바이오센서의 효시는 1962년 포도당을 측정하기 위해 Clark이 dialysis membrane을 이용하여 최초의 Glucose센서를 개발한 이래로 생물공학, 화학공학, 전자공학, 생명공학 및 컴퓨터 공학 등 여러 분야가 접목되면서 급속도로 연구 개발되어 왔다.(중략)

  • PDF

Flexible Micro Sensor

  • 신규호;황은수;김용호;임창현;김용준
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제17권8호
    • /
    • pp.25-32
    • /
    • 2004
  • 센서는 인간의 오감에 해당하는 감지기로서 온도, 소리, 빛 등의 물리, 화학적 신호를 전기적 신호로 변환시켜주는 일련의 장치를 말한다. 물론 센서에 대한 정의 및 분류 방법은 다양하게 표현될 수 있으나 본 논문에서는 MEMS(Micro Electro-Mechanical System) 기술을 적용하여 Smart화 혹은 Wireless화에 필요한 Micro 센서로 그 범위를 한정하고자 한다. 만일 센서를 아주 작게(Micro Sensor) 만들 수 있고 그것들끼리 무선으로 연결될 수(Wireless Network) 있다면 우리의 삶의 형태는 지금과는 매우 다른 모습으로 전개 될 것이다. 그림 1은 2004년에 정보통신부가 발표한 Ubiquitous Sensor Network의 개념도이다.(중략)

  • PDF

금속 양이온인식 특성을 갖는 세그먼트화 공액계 고분자센서소재의 합성 (Synthesis of Segmented Conjugated Polymer based Optical Sensing Material with Metal Cation Recognition Property)

  • 나종호;박원호;이택승
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.305-308
    • /
    • 2002
  • 선택적인 이온센서의 개발은 환경적, 생리학적, 의학적 중요성에 의해 높은 관심을 받고 있다. 지금까지 전기 화학적인 검출, 형광검출, 그리고 다른 광학적인 방법들에 근거한 매우 다양한 이온센서들이 연구되어 왔다. 금속이온들의 선택적인 결합은 음이온들이나 중성물질 보다 상당히 쉽게 결합하기 때문에, 금속이온 인식을 위한 형광 화학센서들의 개발이 일찍부터 이루어졌다. (중략)

  • PDF

고감도 수소센서를 위한 팔라듐 나노선의 전기화학적인 성장 (Electrochemical Growth of Palladium Nanowire for Highly Sensitive Hydrogen Sensor)

  • 조송이;강보라;임연호
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.21-24
    • /
    • 2010
  • 본 연구에서는 금속 전극사이에 팔라듐 나노선을 성장시키기 위해 직류와 이중전기영동 방법을 이용한 전기화학적 방법을 제안하였다. 팔라듐 나노선의 최적 성장 조건들을 파악하기 위해 교류의 인가 주파수 및 전압의 영향들이 조사되었다. 합성된 팔라듐 나노선들은 수백 나노미터의 직경과 $8\;{\mu}m$ 길이를 갖고 있으며, $1\;k{\Omega}$의 우수한 전기적 저항 특성을 보였다. 최종적으로 완성된 팔라듐 나노선들은 상온에서 수소 농도 100 ppm에서 2500 ppm의 범위에서 수소검출 평가를 수행하였으며, 수소센서에 적합한 우수한 검출 감도 및 응답시간을 보였다.

전기전도성 고분자 위에 고정된 압타머에 흡착된 테트라브롬페놀프탈레인 에틸 에스테르를 이용한 트롬빈 검출 (Thrombin Detection with Tetrabromophenolphthalein Ethyl Ester Adsorbed on Aptamer-attached Conductive Polymer)

  • 정새로미;노희복;심윤보
    • 전기화학회지
    • /
    • 제19권4호
    • /
    • pp.134-140
    • /
    • 2016
  • 새로운 산화환원 표지자를 이용한 압타머 기반의 전기화학적 트롬빈 검출 바이오 센서를 개발하였다. 1차 지방족 아민(primary aliphatic amine) 으로 개질한 압타머를 전기 전도성 고분자 poly-(5,2':5',2"-terthiophene-3'-carboxylic acid) (polyTTCA) 층 위에 공유결합을 통해 고정하여 센서 표면을 개질하였다. Tetrabromophenolphthalein ethyl ester (KTBPE)를 압타머와 상호 작용시켜 전기화학적인 산화환원 표지자로 사용하였다. 압타머로 개질한 층 위에 KTBPE의 산화반응을 differential pulse voltammetry (DPV)를 사용하여 조사하였으며, 최종 센서의 특성은 voltammetry, QCM, and ESCA 를 사용하여 조사하였다. KTBEF와 압타머 센서와 반응 후, KTBPE의 산화 피크는 감소하였다. 센서의 선형 동적 범위는 10.0 ~ 100.0 nM 이었으며, 이 때 검출 한계는 $1.0{\pm}0.2nM$이었다.

탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가 (Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.13-18
    • /
    • 2024
  • 웨어러블 디바이스용 유연 전극 소재 개발을 위해 탄소섬유 토우(carbon fibers tow)의 전처리에 따른 전기화학적 특성을 조사하고, 이를 활용하여 포도당을 타겟으로 전기화학적 비효소 센서를 제작하였다. 탄소섬유 토우는 탈사이징(desizing)과 활성화(activation) 공정을 통해 전처리 되었으며, 활성화는 화학적 산화와 전기화학적 산화의 두 가지 방법으로 이루어졌다. 전처리된 샘플은 주사전자 현미경(SEM)을 이용하여 표면 분석되었으며, 전기화학적 특성 및 센싱성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. 탄소섬유 토우는 전처리를 통해 감소된 Ret와 ΔEp, 증가된 Ip 등 향상된 전기화학적 특성을 보였으며, 두 활성화 방법에서는 유사한 전기화학적 특성이 얻어졌다. 본 연구에서는 전기화학센서 적용을 위해 전기화학적으로 활성화된 탄소섬유 토우를 최종 전극 물질로 선정하였다. 이 전극을 기반으로 제작된 비효소적 포도당 검출 센서는 0.09899~3.754 mM과 3.754~50 mM의 선형 구간에서 각각 0.744 mA/mM과 0.330 mA/mM 정도의 향상된 감도를 보였다. 본 연구를 통해 탄소섬유 토우의 전극 소재로서 사용 가능성을 확인했으며, 고성능 유연 전극 소재 개발에 기초 연구로 활용 가능할 것으로 기대된다.

CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선 (Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites)

  • 박미선;배태성;이영석
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.145-152
    • /
    • 2016
  • 본 연구에서는 전기화학적 바이오센서의 포도당 감지능을 높이고자 금 나노 입자가 분산된 다중벽탄소나노튜브(multi-walled carbon nanotube, MWCNTs)에 CuO를 도입하였다. 금 나노 입자로 인하여 나노 클러스터(cluster) 형상을 갖는 CuO가 합성되었으며, 이는 포도당 감지능력에 매우 큰 영향을 나타내었다. 0.1 mole의 CuO가 합성되었을 때 CuO/Au@MWCNTs 나노복합재를 전극재료로서 바이오센서는 $504.1{\mu}A\;mM^{-1}cm^{-2}$으로 가장 높은 민감도를 보여주었으며, 이 값은 MWCNTs만을 전극으로 이용할 때보다 약 4배 정도 컸다. 또한, 0-10 mM의 긴 선형 구간(linear range)과 0.008 mM의 낮은 LoD (limit of detection) 값을 보여주었다. 이러한 실험 결과들은 CuO/Au@MWCNTs 나노복합재가 CuO를 이용한 다른 전기화학적 바이오센서보다 우수하다는 것을 입증하였으며, 이는 나노 클러스터 형상의 CuO가 포도당 감지에서 전기화학적 반응에 유리하기 때문으로 사료된다.