• Title/Summary/Keyword: 전기촉매성

Search Result 305, Processing Time 0.032 seconds

Synthesis of High Value-added Carbide Materials (MXenes) from Recycled Oxides (재활용 산화물로부터 고부가가치 탄화물(맥신) 소재 합성)

  • Hanjung Kwon
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.29-35
    • /
    • 2024
  • The recycling of waste resources, such as spent catalysts, primarily involves leaching and extracting metal components via smelting. These metal components are then recovered as salts, such as sulfates and nitrates. When crystallization occurs during the calcination of the recovered salts, the salts are converted into oxides, which are then reduced to form metals or ceramic materials. Common reducing agents used in oxide reduction include hydrogen and carbon, and metal powders are obtained upon reduction. Carbide synthesis can occur if the recycled element is a transition metal and carbon is used as the reducing agent. Despite being ceramic materials, transition metal carbides exhibit excellent conductivity owing to their metallic bonding. Recently, MXene, a two-dimensional transition metal carbide, has gained attention for electromagnetic wave shielding, secondary battery electrodes, and water purification owing to its electrical conductivity and large surface area. This study developed a process for synthesizing high-value MXene materials from waste resources. The properties of these MXenes were evaluated to confirm the potential of using waste resources as raw materials for MXenes.

Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode (다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응)

  • Kim, Jung Ryoel;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.247-255
    • /
    • 2014
  • $La_{0.8}Sr_{0.2}CuO_3$ powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and $10^{\circ}C$ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at $5^{\circ}C$, and methane, ethane and propane at $10^{\circ}C$ respectively. Optimal potentials for $CO_2$ reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (-1.5 V) for liquid products regardless of concentration and temperature.

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

A Study on Sulfonated Fluorenyl Poly(ether sulfone)s as Catalyst Binders for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 촉매층 바인더를 위한 Sulfonated Fluorenyl Poly(ether sulfone)에 관한 연구)

  • Cho, Won Jae;Lee, Mi Soon;Lee, Youn Sik;Yoon, Young Gi;Choi, Young Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Oxygen reduction reaction in the fuel cell (ORR) plays a dominant role in the overall reaction. In addition, the low compatibility between the membrane and the binder consisted of different materials, greatly reduces the efficiency of the fuel cell performance. In view of these two problems, geometrically modified copolymers with 9.9_Bis (4-hydroxyphenyl) were synthesized via condensation reaction instead of conventional biphenol and were adopted as hydrocarbon ionomer binders. By utilizing these binders, two kinds of MEAs using fluorinated Nafion membrane and hydrocarbon based membrane were manufactured in order to electrochemical performance evaluation. With current-voltage curves, there was no significant difference in the 0.6 V when two types of membrane were applied. Also, tafel slope became considerably lower as compared to the Nafion membrane. Thus, it is determined that the new hydrocarbon binder is expected to contribute the improvement in performance of fuel cells.

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

Second-Order Nonlinear Optical Properties of Organically Modified Titania Thin Film (유기염료가 복합화된 타이타니아 박막재료의 이차비선형광학특성에 관한 연구)

  • Im, Seon-Jin;Gwak, Hyeon-Tae;Choe, Dong-Hun;Park, Su-Yeong;Kim, Nak-Jung
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.466-471
    • /
    • 1994
  • The polymeric titania sol was prepared via partial hydrolysis of titanium isopropoxide and its characteristics were investigated. The effect of solvent, catalyst and water content on the sol stability was investigated. The shear viscosities of sol solution at different temperatures were measured to determine the gel time. Employing the spin coating technique, optically clear and transparent titanium oxide thin film was fabricated. Even after doped with second-order nonlinear optical(NL0) active monomers, the film quality was maintained very homogeneous. The film was corona-poled under 3~ 5kV at 50~$100^{\circ}C$ range. The electro-optic coefficient, $r_{33}$ was measured to be 1.5~5pm/V using the wavelength, 632.8nm from He-Ne laser.

  • PDF

Transesterification Kinetics of Dimethyl Terephthalate with 1,4-Butanediol (디메틸테레프탈레이트와 1,4-부탄디올의 에스테르교환 반응 특성)

  • Cho, Impyo;Lee, Jinhong;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.58-67
    • /
    • 2013
  • PBT (polybutylene terephthalate) has excellent mechanical properties such as low absorption, dimensional stability, abrasion resistance. It is used in manufacturing electronic components, the automobile part and the various precise parts. Bis (hydroxybutyl) terephthalate (BHBT) which is a PBT monomer, can be produced by transesterification reaction of DMT (dimethyl terephthalate) with 1,4-butandiol (BD). The kinetics of transesterification reaction of DMT with BD using zinc acetate as a catalyst was studied in a batch reactor. Previous kinetic studies was carried out in a semibatch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous models was obtained and found to have a good agreement between model predictions and experimental data.

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

결정질 실리콘 태양전지 표면 조직화 형상과 효율의 상관관계 분석

  • Kim, Min-Yeong;Kim, Jun-Hui;Park, Ju-Eok;Jo, Hae-Seong;Kim, Dae-Seong;Byeon, Seong-Gyun;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.445.2-445.2
    • /
    • 2014
  • 표면 조직화의 목적은 태양전지 표면에서의 입사되는 빛의 반사율을 감소 시키고, 웨이퍼 내에서 빛의 통과 길이를 길게 하며, 흡수되는 빛의 양을 증가시키는 것이다. 본 연구에서는 여러 가지 표면 조직화 공정 기술을 이용하여 표면 형상에 따른 광 변환 효율에 대해 연구하였으며, 셀을 제작하여 전기적 특성과 광학적 특성의 상관관계를 분석하였다. KOH를 이용한 표면 조직화, 산 증기를 이용한 표면 조직화, 반응성 이온 식각을 이용한 표면 조직화, 금속 촉매 반응을 이용한 표면 조직화 공정 기술을 이용하여 표면 조직화 공정을 진행하였다. 셀 제작 결과, 반사도 결과와는 상반되는 결과를 얻을 수 있었다. 표면 조직화 형상에 따른 셀 효율의 변화는 도핑 프로파일과 표면 재결합 속도의 변화 때문이라 생각되며 더 명확한 분석을 위해 양자 효율을 측정하여 분석을 시도하였다. 표면 조직화 공정 기술별 도핑 프로파일을 보면 KOH를 이용한 표면 조직화 공정을 제외한 나머지 표면 조직화 공정들의 도핑 프로파일은 불균일하게 형성되어 있는 것을 확인 할 수 있다. 양자 효율 측정 결과 단파장 대역에서 낮은 응답특성을 가지는 것을 확인 할 수 있었다. 그 이유는 낮은 반사도를 가지는 표면 조직화 공정의 경우 나노사이즈의 구조를 갖기 때문에 균일한 도핑 프로파일을 얻지 못해 전자, 정공의 분리가 제대로 이루어지지 못하였고 표면 재결합 속도증가의 원인으로 단락전류와 개방전압이 낮아져 효율이 떨어진 것으로 판단된다. 결과적으로 낮은 반사율을 갖는 표면 조직화 공정도 중요하지만 표면 조직화 공정 기술에 따른 균일한 도핑 프로파일을 갖는 공정을 개발한다면 단파장 응답도가 향상되어 단락전류밀도와 개방전압 상승효과를 얻을 수 있을 것이라 판단된다.

  • PDF