• Title/Summary/Keyword: 전기적 자극

Search Result 482, Processing Time 0.023 seconds

Convergence of Acupoint and Electrical Stimulation Therapy for Blood Flow and Pain Threshold (혈류량과 통증역치에 대한 경혈과 전기자극치료의 융합연구)

  • Yi, Dong-Hyun;Kim, Beom-Ryong;Hur, Yoon-Jung;Kim, Dong-Hoon;Shim, Su-Young;Yim, Jong-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.79-87
    • /
    • 2019
  • This study examined how the application of silver spike point (SSP) and acupuncture-like transcutaneous electrical nerve stimulation (A-TENS) on acupoints affects blood flow and pain threshold, using laser Doppler blood fluxes and the Commander algometer. Our study included 32 healthy men and women who were randomly divided into the SSP group (n=18) and the A-TENS group (n=14). The pain threshold and blood flow were measured at the Neiguan (PC6) of the Jueyin Pericardium Meridian of the hand. SSP was performed with a 2.8cm electrode at a fixed frequency of 3 Hz for 15 minutes. The change in blood flow and pain threshold after the intervention significantly differed between the two groups (p<0.05). We found that the application of SSP and A-TENS on an acupoint altered their blood flow and pressure pain threshold, with SSP resulting in significantly greater change than A-TENS. Based on these results, the convergence of acupoint and electrical stimulation therapy can be usefully applied as a method for various patients. Continued development of convergence interventions is necessary.

Recent Advances in Electric Stimulus-Responsive Soft Actuators (전기자극 감응형 소프트 액추에이터의 최신 동향)

  • Seong-Jun Jo;Gwon Min Kim;Jaehwan Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.247-264
    • /
    • 2024
  • Recent advances in electro-active polymer (EAP) actuators, owing to their flexibility, lightweight, and simple fabrication process, have showcased their high utility across various fields such as soft robotics, biomimetics, wearable devices, and haptic technologies. Moreover, EAP actuators are evolving into smart devices with new functions and characteristics through the integration of functional materials and innovative technologies. This paper categorizes EAPs into ionic EAPs and electronic EAPs. Ionic EAPs include, most notably, ionic polymer-metal composites (IPMCs) and conducting polymers (CPs), while electronic EAPs encompass dielectric elastomer actuators (DEAs), ferroelectric polymer actuators, and the recently introduced hydraulically amplified self-healing electrostatic (HASEL) actuators. Detailed explanations based on the latest research are provided concerning the mechanism, structure, performance improvement strategies, methods for adding functionality, and application areas for each type of actuator.

Bio-signal Based Rehabilitation Program and Data Management (국내 연하장애 기능적 전기 자극치료기 사용 현황과 장비관리 실태 분석)

  • Heo, S.Y.;Park, J.H.;Rhee, K.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • This study has been conducted to identify the current status and practices of electrical stimulation for patients with dysphagia in Korea. Main goal of the study is to find evidences of developing and distributing a quality indicator and organized performance exam. This study analyzed 50 survey questionnaires given to clinical professionals in upper-scale general hospitals, university hospitals, nursing homes and professional rehabilitation hospitals. The survey sent out and collected by E-mails or interviews from August 21, 2013 to November 10, 2013. Most of the hospitals showed lack of using a quality indicator and organized performance exams in device maintenance, pre-operational tests and post-operational tests. It is strongly recommended to develop a standardized guideline of a higher quality indicator and organized performance exam in using neuromuscular electrical stimulator for patients who are suffering from dysphagia.

  • PDF

The Influence of Contamination Affected Phenmenon of Electriacl Conduction in PET (PET의 전기전도현상에 미치는 오염의 영향)

  • 국상훈;고두석
    • Electrical & Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.333-341
    • /
    • 1988
  • 포리에틸렌, 테레프탈레트를 금속감화물로 오염시켜 열자극특성을 중심으로 가동이온의 중성화, 재이온화 및 이동의 과정등에서 이온의 거동에 관하여 검토하였다. PET가 오염이 되면 이온이 증가되고 전극금속의 영향이 있으며 고온에서 서브리니어 특성을 가지며 가동이온의 증성화 현상이 있는 것을 밝혔다. 가동이돈의 주기적 운동에 기인한 직류전기전도모델로 실험한 결과가 정성적으로 정상전류 전압 특성과 일치함이 입증되었다.

  • PDF

Studies on the Regulation of Calcium Activity in Myocardial Contraction (심근 수축에 있어서 Calcium작용의 조절에 관한 연구)

  • Ko, Chang-Mann;Hong, Sa-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 1990
  • Influences of trigger calcium on myocardial contraction from several sources were investigated on the frequency reduction-induced changes of contraction in rat left atria driven by electrical field stimulation. Rat atria elicited characteristic three phase-changes according to frequency reduction: the first rapid rise in twitch tension, the second transient fast decrease in tension and the third maintenance of twitch tension at about 200% of resting tension during high frequency. Caffeine treatment enormously suppressed the frequency reduction-induced twitch tension increase. The atrial contraction during high frequency vanished after verapamil treatment. But, during low frequency, atrial contraction revived in the presence of verapamil. Ouabain treatment and sodium depletion in superfusing solution abolished the characteristic second phase with slow frequency. These results suggest that slow calcium channel is an indispensable calcium entry route and calcium release from sarcoplasmic reticulum is an major source for trigger calcium in cardiac contraction. And sodium-calcium exchange has a modulatory roles in the regualtion of trigger calcium according to the changes of intracellular sodium concentration.

  • PDF

Voice Change Associated with Swallowing Disorder Caused by a Stroke After Neuromuscular Electrical Stimulation (뇌졸중으로 인한 삼킴장애 환자의 경부근육전기자극치료에 따른 음성 변화)

  • Byeon, Hae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1665-1671
    • /
    • 2012
  • The purpose of this study was to look into changes in voice using acoustic analysis during the process of neuromuscular electrical stimulation targeting dysphagia treatment. Fifteen man with dysphagia caused by stroke was treated neuromuscular electrical stimulation for two months and intensity of voice, $F_0$, Jitter, Shimmer, NNE were measured. The results of this study that improvement in functions of dysphagia and Jitter, Shimmer were stabilized. But there was not significantly changes of $F_0$. NNE was improved after the intervention, but still showed abnormal levels. This result suggests a possibility of effects that Neuromuscular electrical stimulation has on stabilization of Jitter, Shimmer and intensity of voice.

Comparison of Retinal Ganglion Cell Responses to Different Voltage Stimulation Parameters in Normal and rd1 Mouse Retina (정상망막과 변성망막에서 전압자극 파라미터 변화에 따른 망막신경절세포의 반응 비교)

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Since retinal prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. Therefore, in this paper, we focused on retinal ganglion cell (RGC) responses to different voltage stimulation parameters and compared threshold charge densities in normal and rd1 mice. For this purpose, we used in vitro preparation for the retina of normal and rd1 mice on micro-electrode arrays. When the neural network of rd1 mouse retinas is stimulated with voltage-controlled pulses, RGCs in degenerated retina also respond to voltage amplitude or voltage duration modulation as well in wild-type RGCs. But the temporal pattern of RGCs response is very different; in wild-type RGCs, single peak within 100 ms appears while in RGCs in degenerated retina multiple peaks (~4 peaks) with ~10 Hz rhythm within 400 ms appear. The thresholds for electrical activation of RGCs are overall more elevated in rd1 mouse retinas compared to wild-type mouse retinas: The thresholds for activation of RGCs in rd1 mouse retinas were on average two times higher ($70.50{\sim}99.87\;{\mu}C/cm^2$ vs. $37.23{\sim}61.65\;{\mu}C/cm^2$) in the experiment of voltage amplitude modulation and five times higher ($120.5{\sim}170.6\;{\mu}C/cm^2$ vs. $22.69{\sim}37.57\;{\mu}C/cm^2$) in the experiment of voltage duration modulation than those in wild-type mouse retinas. This is compatible with the findings from human studies that the currents required for evoking visual percepts in RP patients is much higher than those needed in healthy individuals. These results will be used as a guideline for optimal stimulation parameters for upcoming Korean-type retinal prosthesis.

The Study on the Measurement of Space Charge of Polyethylene Film for use in Power Equipment by TSSP Method. (전력설비용 Polyethylene Film의 열자극 표면 전위법에 의한 공간전하에 측정에 관한 연구)

  • 국상훈;이경섭
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.4 no.4
    • /
    • pp.68-78
    • /
    • 1990
  • 절연파괴의 원인이 되는 절연체중의 공간전하의 여러 특성을 정량적으로 측정하였다. 전극에서의 주입전하가 트랩되어 주로 공간전하를 형성하는 것을 확인하였다. TSSP측정법으로 컬렉팅 전위를 결정하고 바이어스의 시간, 전압, 온도에 따른 공간전하 변화량을 측정하여 공간적 분포의 깊이를 조사하였다. 그리고 정상상태에 있어서 모델과 해석과 시험 결과가 비교적 잘 일치함을 발견하였다.

  • PDF

The Center Locus Estimation of the Evoked Potential Distributions During Visual Stimulation in Human (시각 자극 동안의 유발성 전위분포 의 중심점 추적에 관한 연구)

  • Park, Gwang-Seok;Min, Byeong-Gu;Lee, Chung-Ung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.3
    • /
    • pp.6-12
    • /
    • 1983
  • The visual evoked potentials were measured using 19 electrodes attached to the scalp in 5 normal and 4 abnormal subjects during visual stimulation and these data were sampled for computer processing with 500 Hz sampling frequency. The center of potential distributions and its time-dependent locus were estimated from these potential distributions using weighting matrix which was determined by the electrodes' position coordinates. In normal subjects these estimated electrical signals were shown to propagate from the frontal lobe to the occipital lobe of the cortex following the known visual pathway. In abnormal subjects, there were significant differences in these estimated propagation pathway. The relationships among this model, the point source model and the dipole source model were analyzed.

  • PDF

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.