• Title/Summary/Keyword: 전과정 $CO_{2}$

Search Result 125, Processing Time 0.033 seconds

A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments (염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구)

  • Kim, Rak-Hyun;Roh, Seung-Jun;Tae, Sung-Ho
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

Assessment of Environmental Impacts and $CO_2$ Emissions from Soil Remediation Technologies using Life Cycle Assessment - Case Studies on SVE and Biopile Systems - (전과정평가(LCA)에 의한 토양오염 정화공정의 환경영향분석 및 $CO_2$ 배출량 산정 - SVE 및 Biopile 시스템 중심으로 -)

  • Jeong, Seung-Woo;Suh, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • The environmental impacts of 95% remediation of a total petroleum hydrocarbon-contaminated soil were evaluated using life cycle assessment (LCA). LCA of two remediation systems, soil vapor extraction (SVE) and biopile, were conducted by using imput materials and energy listed in a remedial system standardization report. Life cycle impact assessment (LCIA) results showed that the environmental impacts of SVE were all higher than those of biopile. Prominent four environmental impacts, human toxicity via soil, aquatic ecotoxicity, human toxicity via surface water and human toxicity via air, were apparently found from the LCIA results of the both remedial systems. Human toxicity via soil was the prominent impact of SVE, while aquatic ecotoxicity was the prominent impact of biopile. This study also showed that the operation stage and the activated carbon replacement stage contributed 60% and 36% of the environmental impacts of SVE system, respectively. The major input affecting the environmental impact of SVE was electricity. The operation stage of biopile resulted in the highest contribution to the entire environmental impact. The key input affecting the environmental impact of biopile was also electricity. This study suggested that electricity reduction strategies would be tried in the contaminated-soil remediation sites for archieving less environmental impacts. Remediation of contaminated soil normally takes long time and thus requires a great deal of material and energy. More extensive life cycle researches on remedial systems are required to meet recent national challenges toward carbon dioxide reduction and green growth. Furthermore, systematic information on electricity use of remedial systems should be collected for the reliable assessment of environmental impacts and carbon dioxide emissions during soil remediation.

Effect of $CO_2$ Laser on Caries Inhibition Evaluated by Laser Fluorescence Measurement (이산화탄소 레이저의 우식 억제 효과에 대한 레이저형광측정 평가)

  • Kim, Seong-Hyeong;Lee, Kwang-Hee;Kim, Dae-Eop;Lee, Ji-Young;Song, In-Kyung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.153-160
    • /
    • 2003
  • The purpose of study was to evaluate the effects of the $CO_2$ laser irradiation on demineralization inhibition and rehardening of human primary tooth enamel by laser fluoresecence measurement. Enamel specimens were made from the human primary teeth. The center spots of the specimens about 2 mm diameter were irradiated by $CO_2$ laser at the conditions of focused continuous or defocused pulsed, 3 or 6 W, for 4 seconds, before or after the demineralization by Coca-Cola for 24 hours at $37^{\circ}C$. The Diagnodent was used to measure the degree of demineralization and rehardening. There was no significant difference between focused continuous and defocused pulsed irradiation. 6W irradiation inhibited the demineralization but 3W did not. 6W irradiation rehardened the demineralized enamel but 3W did partially. The color of enamel was changed to brown to black after 6W irradiation but 3W caused no color change. $CO_2$ laser irradiation showed the effects on demineralization inhibition and rehardening of human priamary tooth enamel, and the laser fluoresecence measurement technique seemed to be a valid evaluation method.

  • PDF

Life Cycle CO2 Assessment and Domestic Applicability Evaluation of the Drainage Material for Reclaimed Land Using Oyster Shell (굴 패각을 이용한 간척지 배수재의 전과정 CO2 배출량 산정 및 국내 적용성 평가)

  • Jeon, Jihun;Son, Younghwan;Kim, Donggeun;Kim, Taejin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.85-93
    • /
    • 2019
  • The objective of this study is to assess the environmental effect of the reclaimed land drainage method using oyster shell through the Life cycle $CO_2$ assessment, and to evaluate the applicability in South Korea. In this Study, the life cycle $CO_2$ emissions of oyster shell (OS) and crushed stone (CS, as avoided product) were assessed and compared. The Life Cycle Assessment method was used for quantitative evaluation of direct or indirect environmental effects of OS recycling. $CO_2$ was selected as the evaluation target material, and the scope of assessment includes the acquisition of materials, processing, transportation, construction phases. Compared to using CS, 77.0% of $CO_2$ emissions in acquisition and processing, 47.0% in transportation and 6.5% in construction phase were reduced, respectively by using of OS. The maximum transportation distance of OS was estimated according to transportation distance of CS. OS has environmental advantages than CS within about 26 - 101 km from the source. OS was found to be applicable to reclaimed lands up to 810 ha, 3,910 ha from Tongyeong and Yeosu, respectively. In addition, the amount of OS that could be used as drainage material for reclaimed land was much higher than annual OS production of South Korea. Therefore, it is considered that OS is sufficient to be used as drainage material for reclaimed land in South Korea.

Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites (수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가)

  • HAN, JEONG-HEUM;LEE, YOUNG-HWAN;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.220-226
    • /
    • 2019
  • Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.

Life Cycle Analysis of Greenhouse Gas Emissions of By-Product Hydrogen Produced from Coke Oven Gas in Steel Mill (제철소 코크스 오븐 가스 부생수소 전과정 온실가스 배출량 분석)

  • YEIM LEE;WOOJAE SHIN;YEJIN YU;HANHO SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.636-642
    • /
    • 2022
  • The "Hydrogen Economic Activation Road map" was announced in 2019, and hydrogen demand is expected to exceed 470,000 tons per year in 2022 and keep increasing. Under this circumstance, it has become important to understand the greenhouse gas (GHG) emissions associated with various hydrogen production pathways. In this study, the evaluation of life cycle GHG emissions regarding the hydrogen produced as by-product from coke oven gas (COG) in steel mill is conducted. To cover the possible range of operations, three literatures were reviewed and their data of inputs and outputs for the process were adopted for calculation. Life cycle inventories and emission factors were mostly referred to GaBi and Intergovernmental Panel on Climate Change (IPCC) guidelines, respectively. When there are multiple products from a single process, the energy allocation method was applied. Based on these sources and the assumptions, the life cycle emission values of COG-based hydrogen were found to be 3.8 to 4.7 kg/CO2-eq./kg-H2.

An Evaluation of Net-zero Contribution by Introducing Clean Hydrogen Production Using Life Cycle Assessment (청정수소 생산 방식 도입에 따른 LCA 기반 탄소중립 기여도 평가)

  • SO JEONG JANG;DAE WOONG JUNG;JEONG YEOL KIM;YONG WOO HWANG;HEE KYUNG AN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.175-184
    • /
    • 2024
  • This study focuses on investigating the importance of managing greenhouse gas emissions from global energy consumption, specifically examining domestic targets for clean hydrogen production. Using life cycle assessment, we evaluated reductions in global warming potential and assessed the carbon neutrality contribution of the domestic hydrogen sector. Transitioning from brown or grey hydrogen to blue or green hydrogen can significantly reduce emissions, potentially lowering CO2 equivalent levels by 2030 and 2050. These research findings underscore the effectiveness of clean hydrogen as an energy management strategy and offer valuable insights for technology development.

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.

Application of Life Cycle Assessment into the Apartment Housing and Calculation of the Energy Consumption and $CO_2$ Emission (전과정평가를 이용한 공동주택의 에너지소비량과 이산화탄소 배출량 산정)

  • Jung, Bo-Ra;Lee, Ha-Shik;Choi, Young-Oh;Lee, Kang-Hee
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.235-240
    • /
    • 2008
  • The environment has played a key role to improve the living condition and develop the industry. In building industries, we should consider the environment and mitigate the environmental affect. For mitigating the its affect, various areas of building technology have been developed and applied into filed work. In addition, the process in applying into field requires to conduct the assessment of the environmental affect and improve its applied technology. A lot of assessment methods are proposed in evaluate the building condition such as post-occupancy evaluation, life cycle management and life cycle assessment. Among these assessment methods, life cycle assessment is effectively utilized the environmental affect in building life cycle. Therefore, this paper aimed at analyzing the energy consumption and $CO_2$ emission in building life cycle, using the life cycle assessment and application of the example in apartment housing. This study shows that the maintenance and the production of building materials stage shares most of the amount of energy consumption and $CO_2$ emission and therefore plays an important role to planning the building in terms of the life cycle. Second, the other stages brings about a very small amount. It is important to decide the building shape and contents to mitigate the environmental affect in terms of material, volume, the pattern of the energy use and others.

  • PDF

Study for the Design of Zero-carbon City through the Application of Renewable Energies (신재생에너지 적용기술이 저탄소녹색도시건설에 미치는 영향연구)

  • Park, Young-Gyu;Kim, Jeong-In;Kim, Kap-Chul
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.15-29
    • /
    • 2010
  • In order to make the best choice for $CO_2$ abatement using renewable energy technologies, it is important to be able to adapt these technologies on the basis of their sustainability, which may include a variety of environmental indicators. This study examined the comparative sustainability of renewable technologies in terms of their life cycle $CO_2$ emissions and embodied energy, using life cycle analysis. The models developed were based on case studies of bioenergy pilot plant in P city of Kyungki province. Final results were total emission of $CO_2$ in Pocheonsi is 670,041 $tCO_2$, around 500,877 $tCO_2$ for electricity and for heat generation, and 169,164 $tCO_2$ for transportation. When used $1,984\;m^3$/day of waste (pig manure etc.) and operated CHP with wood chips of 144,664 ton/year, the $CO_2$ emission in P city was left as is an emission of 449,274 $tCO_2$ and an abatement of $CO_2$ in this region was increased by 32.9%.