• Title/Summary/Keyword: 적층 물성

Search Result 220, Processing Time 0.026 seconds

A Study on Structural Safety of CFRP Plate with Notch Hole at Center Part under Torsion (비틀림을 받는 중앙부에 노치홀을 가진 CFRP 판의 구조 안전성에 관한 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.925-932
    • /
    • 2017
  • In this study, the analysis of plate under torsion was carried out according to stacking angle at the unidirectional carbon fiber reinforced plastic(UD CFRP) among composite materials. In case of UD CFRP, the material property due to stacking angle becomes different. Also, the stacking angles were designated to 15°, 30°, 45°, 60°, 75° and 90° at the study models. The notch hole was applied at the center part by supposing that rivet or hole was used. The analysis method was used by applying the experimental method at ISO 15310. Two jigs were fixed at the lower part and two jigs were descending at the upper part. As seen by the analysis result values at this study, the shear stress happening at the fracture part was seen with the lowest value in case of the stacking angle of 45°. It is known that the case of the stacking angle of 45°has the structural safety and durability higher than those of the other stacking angles when the torsion applies. It is thought that this result can be applied to the data of basis which can be devoted to the durability when the torsion is applied at CFRP plate.

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).

Surface Characteristics of Metallic 3D Printed Dental Framework (금속 3D printing으로 제작한 치과보철물의 표면특성)

  • Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.21-21
    • /
    • 2018
  • 다양한 소재(금속, 세라믹, 고분자 소재 등)들이 3차원 형상기반 적층제조법에 적용되고 있는데, 금속 소재를 이용하여 3D 프린팅 법으로 치과용 수복물을 제조하는 연구가 많이 보고되고 있다. 하지만, 티타늄 또는 티타늄 합금 분말을 이용하여 3D 프린팅 법으로 제작한 치과용 보철물에 관한연구 보고는 많지 않다. Kanazawa 등 (2014)은 Ti-6Al-4V 합금분말을 이용하여 SLM법으로 총의치 용 framework를 제작하여 주조법으로 제작한 것과 비교 평가하였고, Mangano 등(2013)은 Ti-6Al-4V 합금분말로 지름이 작은 일체형 (1-piece narrow-diameter) 임플란트를 SLS법으로 제작하여 16명의 환자에게 식립한 다음, 2년간 관찰하였고, Mangano 등 (2014)은 cone-beam computed tomography (CBCT) data를 3D이미지로 변환시켜 DLMS법으로 치근 형상의 임플란트를 제작하여 15명의 환자에게 식립한 다음, 1년간 관찰하였다. 또한 서울대학교 및 연세대학교 치과생체재료과학교실 (2016)에서는 3D 프린팅 법으로 제작한 티타늄 시편과 기계 가공한 티타늄 시편의 물성을 비교하였다. 그러나 티타늄 합금 분말을 이용하여 3D 프린팅 법으로 제작한 치과용 보철물을 실제 임상에 적용하는 단계에서 기존 기계가공 방식으로 제작한 티타늄 보철물과 3D 프린팅 법으로 제작한 티타늄 보철물의 물성과 표면특성을 다양하게 비교 평가하는 것이 필요하여 본 연구에서는 3D 프린팅 법으로 제작한 티타늄 시편과 기계 가공한 티타늄 시편의 물성특성과 표면특성을 비교하여 조사하였다.

  • PDF

Reactive Dispersion and Mechanical Property of Dicyanate/Montmorillonite Nanocomposite (반응이 수반된 Dicyanate/Montmorillonite Nanocomposite의 분산과 물성특성 연구)

  • 장원영;이근제;남재도
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Dicyanate-clay nanocomposite has been prepared by a melt in-situ polymerization method for different modifiers and cation exchange capacity (CEC) values in order to study dispersion and mechanical property. Various dicyanate nanocomposites were prepared by using different MMT systems containing different intercalants which led to different initial gallery heights and packing density. Depending on compatibility between dicyanate and clays, the degree of dispersion varied. Dispersion of clay plates in dicyanate resin depended mainly on CEC and aliphatic chain length of modifier. The lower CEC and shorter aliphatic chain length of modifier gave the exfoliation structure. It was also found that the reactivity of intercalant with dicyanate resin was one of the key factors facilitating the intercalation/exfoliation process of dicyanate/MMT nanocomposites. Shear modulus of reaction-induced dicyanate nanocomposite was significantly increased.

A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module (배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구)

  • Lee, Seung-Chan;Ha, Sung Kyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, in order to improve the quality issue and component characteristics of the battery module, which is one of the major parts of the electric vehicle. The structure is reinforced by using the composite material and the mechanism structure optimization of Hybrid concept which can overcome the disadvantages of single material was performed and the performance was compared. For this purpose, figure out the main design variables of composite materials according to Classical Laminated Plate Theory (CLPT) and the algorithm for predicting composite material properties have been studied. Based on the mechanical properties of the designed composite materials, finite element analysis (FEM) and the performance of the battery module was verified. Consequently, according to the verification result, Hybrid Battery Module reinforced with Selective Composite Patch can reduce the weight by 30% and reduce the product thickness by 32.5% compared with the existing Al battery module and proved the merit of Hybrid structure such as maintaining impact performance.

An Empirical Formulation for Predicting the Thickness of Multilayer PCB (다층 PCB의 두께 예측을 위한 실험식 도출 연구)

  • Kim, Nam-Hoon;Han, Gwan-Hee;Lee, Min-Su;Kim, Hyun-Ho;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.182-187
    • /
    • 2022
  • In this paper, the thickness of a multilayer PCB was predicted through an empirical formulation based on the physical properties of the prepreg used in multilayer PCB. Since the thickness of prepreg reduction when manufacturing a PCB due to the physical properties and copper foil residual rate, it is necessary to accurately predict the thickness of the PCB through the thickness empirical formulation. To determine the density of the prepreg, the mass and thickness of the prepreg were measured. To manufacture the CCL, the prepreg and copper foil were laminated using a hot press machine, and the thickness was measured using a microscope and micrometer. An 8-layerd PCB was designed with different circuit densities to measure the change in the thickness with the copper foil residual ratio, and the proposed empirical formulation was verified by comparing the measured thickness with the value obtained using the empirical formulation. As a result, the errors for the CCL and multilayer PCB were 2.56% and 4.48%, respectively, which demonstrated the reliability of the empirical formulation.

Study on Out-of-plane Properties and Failure Behavior of Aircraft Wing Unit Structures (항공기 날개 부분 단위구조체의 면 외 방향 물성 및 파손거동에 관한 연구)

  • Yoon, Chang-Mo;Lee, Dong-Woo;Byun, Joon-Hyung;Tran, Thanh Mai Nguyen;Song, Jung-il
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Carbon fiber-reinforced plastic, well known high specific strength and high specific stiffness, have been widely used in the aircraft industry. Mostly the CFRP structure is fabricated by lamination of carbon fiber or carbon prepreg, which has major disadvantage called delamination. Delamination is usually produced due to absence of the through-thickness direction fiber. In this study, three-dimensional carbon preform woven in three directions is used for fabrication of aircraft wing unit structure, a part of repeated structure in aircraft wing. The unit structure include skin, stringer and rib were prepared by resin transfer molding method. After, the 3D structure was compared with laminate structure through compression test. The results show that 3D structure is not only effective to prevent delamination but improved the mechanical strength. Therefore, the 3d preform structure is expected to be used in various fields requiring delamination prevention, especially in the aircraft industry.

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites (샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dea-Hwan
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2008
  • This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.

A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters (모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구)

  • Choo, Jeong Hwan;Jung, Hyun Bum;Hong, Sang Ryel;Kim, Yong Kap;Kim, Jae San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • In this study, we propose a method for predicting the mechanical properties of the printed circuit board (PCB) that has transversely isotropic characteristics. Unlike the isotropic material, there is no specific test standard for acquisition of the transversely isotropic properties. In addition, common material test methods are not readily applicable to that type of laminated thin plate. Utilizing the natural frequency obtained by a modal test and the sizing optimization technique provided in $OptiStruct^{(R)}$, the mechanical properties of a PCB were derived to minimize the difference between test and analysis results. In addition, the validity of the predicted mechanical properties was confirmed by the MAC (Modal Assurance Criteria) value of each of the compared mode shapes. This proposed approach is expected to be extended to the structural analysis for the design verification of the top product that includes a PCB.

Strength Analysis of 3D Concrete Printed Mortar Prism Samples (3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석)

  • Kim, Sung-Jo;Bang, Gun-Woong;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2022
  • The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.