• Title/Summary/Keyword: 적층 물성

Search Result 220, Processing Time 0.021 seconds

A Study on the Mechanical Properties of Additive Manufactured Polymer Materials (적층조형 폴리머 재료의 기계적 물성 연구)

  • Kim, Dongbum;Lee, In Hwan;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

A Study on Tensile Properties of Laminated Nanocomposite Fabricated by Selective Dip-Coating of Carbon Nanotubes (탄소나노튜브의 선택적 딥코팅을 이용해 제작된 적층 복합재료의 인장 물성에 대한 연구)

  • Kang Tae-June;Kim Dong-Iel;Huh Yong-Hak;Kim Yong-Hyup
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • Carbon nanotubes reinforced copper matrix laminated nanocomposites were developed and the mechanical properties were evaluated by using micro-tensile testing system. Sandwich-type laminated structure constituted with carbon nanotube layers as a reinforcement and electroplated copper matrix were fabricated by a new processing approach based on selective dip-coating of carbon nanotubes. The mechanical properties of nanocomposites were improved due to an enhanced load sharing capacity of carbon nanotubes homogeneously distributed within the in-plane direction, as well as a bridging effect of carbon nanotubes along the out-of-plane direction between the upper and lower matrices. The universality of the layering approach is applicable to a wide range of functional materials, and here we demonstrate its potential use in reinforcing composite materials.

Test Method on Interlaminar Tensile Properties of Carbon Fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee Ji-Hyung;Kim Hyoung-Geun;Lee Hyung-Sik;Park Young-Che;Ju Se-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.81-85
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental Study to measure that properties of carbon fabric/phenolic composites are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best method, found out, was adopted to measure transverse through-the-thickness properties of composite materials. The results show that strain trends on four faces of composite specimen are the same.

  • PDF

Test Method on Interlaminar Tensile Properties of Carbon fabric Reinforced Phenolic Composites (카본-페놀 직물복합재료의 층간인장물성 측정기법)

  • Lee, Ji-Hyung;Kim, Hyoung-Geun;Lee, Hyung-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.48-52
    • /
    • 2006
  • Through-the-thickness properties of thick-walled cylindrical composites are required to determine structural performances because interlaminar tensile stress is primarily responsible for structural failure of the composites during their curing process. It is necessary for evaluating the tensile properties to find individual test methods to find appropriate methods because there are no recognised international standards(test methods and test specifications) available for generating reliable tensile properties in the direction. This paper has performed an experimental study to measure that properties of carbon fabric/phenolic composites which are produced by domestic company. Several test methods using an aluminum specimen were compared and evaluated. The best test method to measure transverse through-the-thickness properties of composite materials was developed by the experimental results that strain trends on all faces of composite specimen are the same.

Determination of Material Properties of Gfrp Snap-Fit Deck by Laminate Analysis and Coupon Tests (적층해석 및 시편시험을 통한 착탈결합식 복합소재 데크의 물성치 추정)

  • Hong, Kee-Jeung;Park, Jin-Woo;Lee, Sung-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.276-279
    • /
    • 2010
  • 유리섬유 복합소재 바닥판은 고강도, 경량 그리고 고내구성을 가지고 있으므로, 현재 국내 및 해외에서 교량에 꾸준히 적용되고 있다. 국내외에서 기존에 사용하고 있는 복합소재 데크는 주로 수평방향의 암수접착을 통한 결합을 실시하고 있으나 본 연구진에 의해 획기적인 착탈결합방식 연결이 가능한 복합소재데크를 개발하였다. 복합소재 적층설계를 통해 설계된 복합소재 데크의 물성치를 ESAComp에 의한 적층해석과 시편시험을 통해 추정하였다.

  • PDF

Determination of Degraded Properties of Vibrating Laminated Composite Plates for Different Layup Sequences (적층배열 변화에 따른 진동하는 복합재료 적층 구조의 미시역학적 물성변화 추정)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • This paper presents a method to detect the fiber property variation of laminated GFRP plates from natural frequency response data. The combined finite element analysis using ABAQUS and the inverse algorithm described in this paper may allow us not only to detect the deteriorated elements from the mirco-mechanical point of view but also to find their numbers, locations, and the extent of damage. To solve the inverse problem using the combined method, this study uses several natural frequencies instead of mode shapes in a structure as the measured data. Several numerical results show that the proposed system is computationally efficient in identifying fiber stiffness degradation for complex structures such as composites with various layup sequences.

Analytical Determination of Out-of-Plane Thermo-elastic Properties for Laminated Composite Plate (복합재 라미네이트의 두께방향 열탄성 물성치 계산)

  • Kim, Kyung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2407-2414
    • /
    • 2015
  • This paper presents analytical expressions for the determination of out of plane thermo-elastic properties for conventional laminated composite plates. The approach follows that commonly accepted for in-plane properties. Results over a variety of lay-ups reveals that it is poor assumption to use transverse tape lamina properties to represent out of plane laminate properties for laminates with more than 10% plies oriented off-axis($90^{\circ}$) from uniaxial or for laminates with angle plies of $15^{\circ}$ or greater.

Matrix Resin Systems with Different Molar Ratios to Improve the Properties of Fiber-reinforced Composites (섬유강화 복합재료의 물성향상을 위한 몰비가 다른 매트릭스 수지에 관한 연구)

  • 이상효;이장우
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.459-468
    • /
    • 2000
  • To improve the mechanical properties of fiber-reinforced polymer matrix composites, laminated composites plates were fabricated using different matrix resins and glass or aramid fibers. The effect of matrix resin system were evaluated by tensile, flexural strength measurements. In the case of surface treated aramid fiber and unsaturated polyester resin composite, maximum flexural properties were observed in the composite prepared from the glass fiber treated with 0.5 wt% silane coupling agents. Vinylester resin composites show the highest tensile properties and isophthalic polyester composites have the highest flexural properties among the unsaturated polyester resin composites studied. The relationship between overlap laminated composites plates and mechanical properties of polymer composites is also investigated in order to improve mechanical properties of glass fiber and unsaturated polyester resin composites.

  • PDF

Effect of Internal Electrode on the Microstructure of Multilayer PTC Thermistor (적층형 PTC 서미스터의 미세구조와 PTCR 물성에 미치는 내부전극재의 영향)

  • Myoung, Seong-Jae;Lee, Jung-Chul;Hur, Geun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.181-181
    • /
    • 2007
  • PTCR 세라믹스를 적층형 부품으로 제조할 경우 소형화, 저 저항화 및 과전류 유입 시 빠른 응답특성을 갖는다는 장점을 가지고 있으며, 이러한 적층형 부품제조시에는 내부전극재가 부품소자의 물성에 중요한 영향을 미친다. 특히 우수한 옴성 접촉(Ohmic Contact)을 갖는 Zn, Fe, Sn, Ni 등의 적층 PTC용 전극재는 높은 산화특성으로 인해 재산화 과정에서의 비옴성 접촉(Non-ohmic contact)을 갖게 되어 PTC 특성을 저하시킬 우려가 있다. 따라서 본 연구에서는 적층형 PTCR 세라믹스의 내부전극재와 반도체 세라믹층의 동시소성거동 및 적층 PTCR 세라믹스의 전기적 특성을 평가하였다. 본 연구에 적용된 내부전극재로는 Ni 전극을 사용하였고, Ni 전극용 paste로는 무공제 paste, 반도체 세라믹공제 paste, $BaTiO_3$ 공제 paste의 3종 전극재가 이용되었다. 적층형 PTCR 세라믹스의 제조공정은 테이프 캐스팅(Tape casting), 내부전극인쇄, 적층 및 동시소성을 포함하는 적층화공정을 적용하였다. 각각의 전극 paste를 적용하여 제조된 chip은 미세구조관찰, I-V특성, R-T특성 등을 평가하여 내부전극내 세라믹공제의 영향을 고찰하였다.

  • PDF

A Statistical Study of Effective Properties due to Fiber Tow Misalignment and Thickness Change for Plain Weave Textile Composites (섬유다발 배열 및 적층수에 따른 평직복합재료 등가물성치의 변화에 관한 통계적 연구)

  • 우경식;서영욱
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.63-72
    • /
    • 2000
  • In this paper, statistical treatments of effective properties for plain weave textile composites were presented. Configurations up to 32 layers with varied stacking phase shifts were considered. Effective properties were calculated by numerical simulation in which uni-axial tensile and shear load were applied at unit cell. Sample analysis was utilized to consider the inherent randomness in the phase shift and the results were treated statistically. It was found that effective properties were dependent on stacking phase shifts for thin plain weave textile composites. The distribution of $E_{xx}$ and $V_{xy}$ were skewed and the range of possible values was relatively large. As the number of layers increased, however, the distribution width became narrower and mean values converged. In contrast, $G_{xy}$ was not affected by phase shifts and thickness changes.

  • PDF