• Title/Summary/Keyword: 적층성능

Search Result 413, Processing Time 0.027 seconds

Manufacturing and Structural Analysis of Thick Composite Spar Using AFP Machine (AFP로 제작된 두꺼운 복합재료 스파의 제작 및 구조 해석)

  • Kim, Ji-Hyeon;Han, Jun-Su;Bae, Byung-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.212-218
    • /
    • 2015
  • A large composite spar was manufactured using an automatic fiber placement (AFP) machine. To verify its structural performance, the weakest part of the structure, which is called 'corner radius', was tested under bending and examined by finite element analysis. Since the application of AFP machine to composite structure fabrication is still in early stage in Korea, this paper presents the summary of whole process for manufacturing composite spar using AFP machine from mandrel design and analysis to verification test. The deflection and stress by mandrel weight and AFP machine force, thermal deformation and natural frequency were all examined for mandrel design. The target structure was composite C-spar and cured in an autoclave. Test results were compared with nonlinear finite element analysis results to show that the structure has the strength close to the theoretical value. It was confirmed that the corner radius of the spar manufactured by AFP process showed deviation less than 20% compared with first ply failure strength. The results indicate that the AFP technology could be used for large scale composite structure production in the near future.

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

A Study on the Application of Composites to Pipe Support Clamps for the Light-weight LNGC (LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구)

  • Bae, Kyong-Min;Yim, Yoon-Ji;Yoon, Sung-Won;Ha, Jong-Rok;Cho, Je-Hyoung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In the shipbuilding and marine industry, as a technology for reducing the weight of parts to reduce energy and improve operational efficiency of ships is required, a method of applying fibers-reinforced composites which is high-strength lightweight materials, as part materials can be considered. In this study, the possibility of applying fibers-reinforced composites to the pipe support clamps was evaluated to reduce the weight of LNGC. The fibers-reinforced composites were manufactured using carbon fibers and glass fibers as reinforcing fibers. Through the computer simulation program, the properties of the reinforcing materials and the matrix materials of the composites were inversely calculated, and the performance prediction was performed according to the change in the properties of each fiber lamination pattern. In addition, the structural analysis of the clamps according to the thickness of the composites was performed through the finite element analysis program. As a result of the study, it was confirmed that attention is needed in selecting the thickness when applying the fibers-reinforced composites of the clamp for weight reduction. It is considered that it will be easy to change the shape of the structure and change the structure for weight reduction in future supplementary design.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers (스프링과 방진고무가 융합된 제진장치의 하중-변위 관계)

  • Mun, Ju-Hyun;Im, Chae-Rim;Wang, Hye-Rin;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.226-234
    • /
    • 2021
  • The objective of this study is to establish the fundamental design data for axial load-displacement relationship under axial monotonic or cyclic responses of seismic damping·isolation (SDI) units developed for ceiling structures. The main parameters include the installation of a spring, the number of rubber layer, prestress stress of bolts for connector between the spring and rubbers, and loading type. Test results showed that SDI units with a spring in the core and higher prestress stress of bolts tended to be higher stiffness at the ascending branch and more ductile behavior at the descending branch. This trends more notable for the specimens under monotonic load rather than cyclic loads. Consequently, the energy dissipation of SDI unit can be optimally designed with the following conditions: installation of a spring within 3-layer rubbers and prestress applied to the bolts at 10% of their yielding strength . When compared with the experimental tension capacity of the developed SDI units, the predictions by JIS B 2704-1 and KDS 31 00 are conservative under monotonic loading but higher by approximately 10% under cyclic loading.

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

Study on the Fiber Alignment using Vacuum Filtration Method (Vacuum Filtration method를 이용한 단섬유(short fiber) 배열 영향성 분석)

  • Sung-Kwon Lee;Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.162-166
    • /
    • 2023
  • Although composite materials are increasingly utilized in general high-strength structures, the demand of performance characteristics as the multifunctional materials has been increased especially in the area of complex electronic devices. While the heat dissipation properties of devices are typically required properties, control of thermal property of composite material especially in the vertical direction is one of the problems to be solved due to its lamination process. In this study, CFRP was manufactured using the Vacuum filtration method for three types of solvent and CFs. In the composite material manufacturing process, the effect of solvent was examined using three solvents where solvents are most frequently used for the dispersion of fibers. Morphology of fiber was observed through a microscope to confirm the arrangement of CFs in the vertical direction. The alignment of fiber was examined through the measurement of the thermal conductivity of the manufactured specimen. For the thermal conductivity measurement, the higher thermal conductivity was obtained with the lower aspect ratio of CF. For the thermal conductivity in the through-plane direction, 8.687 W/m·K, 10.322 W/m·K, and 13.005 W/m·K of thermal conductivity was measured in the DMF, NMP and Acetone, respectively.

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.