• Title/Summary/Keyword: 적층복합보강

Search Result 98, Processing Time 0.025 seconds

A Study on the Buckling and Postbuckling Behaviors of Laminated Composite Plates and Stiffened Laminated Composite Panels by Finite Element Method (유한요소법을 이용한 복합적층판과 보강된 복합적층 패널의 좌굴 및 좌굴후 거동에 관한 연구)

  • 허성필;양원호;성기득;조명래
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.599-606
    • /
    • 1999
  • 복합 적층 판과 보강 재를 설치한 보강된 복합 적층 패널의 좌굴을 고려한 설계에서, 좌굴이 항상 구조물의 최종 파손을 의미하는 것은 아니므로 이들의 좌굴 및 좌굴 후 거동에 대한 정확한 이해와 연구가 필요하다. 본 연구에서는 유한요소 법을 이용하여 적층 메커니즘과 섬유 배향각, 적층 순서 등이 복합 적층 판과 보강된 복합 적층 패널의 좌굴 및 좌굴 후 거동에 미치는 영향을 체계적으로 해석하였고, 각 변수에 따른 좌굴 및 좌굴 후 거동 특성을 분석하였다.

  • PDF

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • 복합재 적층판은 중량에 비해 높은 강성과 강도가 요구되는 공학의 다양한 분야에서 매우 유용하다. 보강섬유 복합재의 공학적 활용이 활발해지고, 중량의 감소화가 설계의 중요한 목적이 됨으로써, 근래 복합재 구조물들의 최적화 설계의 중요성이 대두되고 있다. 그러나 복합재 적층 구조물 재료의 비등방성에 의해 해석과 설계가 매우 어렵다. 본 연구에서는 수치적 최적화 방법과 유한요소법을 이용하여 보강섬유 복합재의 최적설계를 하였다. 복합재 적층판으로 이루어진 개단면 보에 있어서 보강섬유의 다양한 적층방향에 대한 거동의 영향을 규명하였다.

  • PDF

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads (면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석)

  • Han, Sung-Cheon;Choi, Samuel
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.191-203
    • /
    • 2006
  • The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.

The Korea Academia-Industrial cooperation Society (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 전체좌굴강도 근사해 유도 및 해석적 검증 방안)

  • Choi, Byung-Ho;Park, Sang-Kyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.600-602
    • /
    • 2012
  • 폐단면리브 적용 판의 면내 압축좌굴 거동 특성 중에서 보강재 강성이 작고 비교적 낮은 임계하중을 받는 경우 전체기둥좌굴 거동이 예상된다. 본 논문은 폐단면리브 단면 강성의 고려 방안에 따라 단순 보 유사모형을 정립하고 전체좌굴에 대해 에너지 근사해법을 적용하여 전체좌굴강도 근사해를 유도하기 위한 기초적인 연구방안으로써 검토한 내용을 소개하고자 한다. 유사모형의 폐단면리브 중심에서 휨강성이 발휘되는 것으로 가정하여 모형화 하였다. 폐단면리브 보강판의 프로토타입 모델에 대해 직교이방성 $[(0^{\circ})_4]_s$와 Cross-ply $[(0^{\circ}/90^{\circ})_2]_s$ 적층단면을 각각 고려한 유한요소 해석을 실시하였다. U리브 단면강성에 따른 복합적층 보강판의 탄성좌굴강도 해석결과를 근사해 공식과 비교하고 U리브로 보강된 복합적층판의 좌굴모드 변화양상을 수치해석적으로 검토하였다.

  • PDF

Buckling Sensitivity of Laminated Composite Pipes Under External Uniform Pressure Considering Ply Angle (등분포하중을 받는 복합재료 관로의 적층각 변화에 따른 좌굴 민감도 분석)

  • Han, Taek Hee;Na, Tae Soo;Han, Sang Yun;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • The buckling behavior of a fiber reinforced plastic pipe was researched. When a cylindrical structure is made of isotropic material, it shows two dimensional buckled shape which has same deformed section along the longitudinal direction. But an anisotropic cylindrical structure shows three dimensional buckled shape which has different deformed section along the longitudinal direction. Because the modulus of elasticity is varied in a certain direction when ply angles are changed, the strength of a pipe are changed as ply angles are changed. In this study, the limitation of two dimensional and three dimensional buckling mode was investigated and the buckling strength of a laminated composite pipe was evaluated.

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

Buckling Strength Analysis of Stiffened Composite Plates for the Optimum Laminate Structure (최적 적층구조를 위한 보강된 복합적층판의 좌굴강도 해석)

  • H.R.,Kim;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 1989
  • The optimun laminated composition of the stiffened composite plates is studied from the view point of buckling strength. The finite element method is applied to the buckling analysis of the composite plates taking into account the effect of shear deformation through the plate thickness. The stiffened plate model is discretized using plate thickness and symmetrically stacked. Parametric study is carried out for the selection of the optimum laminate structure; optimum fiber angle sequence through the thickness. Laminate structure of $[-45^{\circ}/45^{\circ}/90^{\circ}/0^{\circ}]$, is found to give the best buckling strength. For the case of that layer number is more than eight, best result is obtained when layers of the same fiber angle are put together, leaving the laminate has the same fiber angle sequence as a whole.

  • PDF

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

Buckling Analysis of Laminated Composite Plates Longitudinally Stiffened with U-Shaped Ribs (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 좌굴 해석연구)

  • Choi, Byung-Ho;Choi, Su-Young;Park, Sang-Kyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Even though the longitudinally stiffened laminated composite plates with closed section ribs should be an effective system for axially compressed members, the existing researches on the applications of closed-section ribs, especially for the laminated composite plates, are not sufficient. This study is aimed to examine the influence of the sectional stiffness of U-shaped ribs on the buckling modes and strengths of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})_4]_s$ and $[(0^{\circ}/90^{\circ})_2]_s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. From the parametric studies, the minimum required ply thicknesses as well as the buckling strengths were presented for the analysis models. The buckling strengths were compared with the theoretical critical stress equation for simply supported plates based on the Classical laminated plate theory. This study will contribute to the future study for evaluating the minimum required stiffness and optimum design of U-rib stiffened plates.

A Study on the Minimum Weight Design of Stiffened Cylindrical Shells (보강원통셸의 최소중량화설계 연구)

  • 원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.630-648
    • /
    • 1992
  • The minimum weight design for simply-supported isotropic or symmetrically laminated stiffened cylindrical shells subjected to various loads (axial compression or combined loads) is studied by a nonlinear mathematical search algorithm. The minimum weight design in accomplished with the CONMIN optimizer by Vanderplaats. Several types of buckling modes with maximum allowable stresses and strains are included as constraints in the minimum weight design process, such as general buckling, panel buckling with either stingers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel and local skin buckling including stiffener rolling. The approach allows the consideration of various shapes of stiffening members. Rectangular, I, or T type stringers and rectangular rings are used for stiffened cylindrical shells. Several design examples are analyzed and compared with those in the previous literatures. The unstiffened glass/epoxy, graphite/epoxy(T300/5208), and graphite/epoxy aluminum honeycomb cylindrical shells and stiffened graphite/epoxy cyindrical shells under axial compression are analyzed through the present approach.