• Title/Summary/Keyword: 적정시설 모델

Search Result 87, Processing Time 0.029 seconds

Design of Emergency Notification Smart Farm Service Model based on Data Service for Facility Cultivation Farms Management (시설 재배 농가 관리를 위한 데이터 서비스 기반의 비상 알림 스마트팜 서비스 모델 설계)

  • Bang, Chan-woo;Lee, Byong-kwon
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Since 2015, the government has been making efforts to distribute Korean smart farms. However, the supply is limited to large-scale facility vegetable farms due to the limitations of technology and current cultivation research data. In addition, the efficiency and reliability compared to the introduction cost are low due to the simple application of IT technology that does not consider the crop growth and cultivation environment. Therefore, in this paper, data analysis services was performed based on public and external data. To this end, a data-based target smart farm system was designed that is suitable for the situation of farms growing in facilities. To this end, a farm risk information notification service was developed. In addition, light environment maps were provided for proper fertilization. Finally, a disease prediction model for each cultivation crop was designed using temperature and humidity information of facility farms. Through this, it was possible to implement a smart farm data service by linking and utilizing existing smart farm sensor data. In addition, economic efficiency and data reliability can be secured for data utilization.

분포형유출모형과 토사유출모형의 Coupling을 통한 사방시설의 저감효과분석

  • Kang, Dong Ho;Lee, Seok Ho;Kim, Man il;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.545-545
    • /
    • 2016
  • 전 세계적으로 여름철 국지성 집중호우 및 태풍으로 인한 피해가 빈번하게 발생하고 있으며, 산지가 많은 국내에서는 산지지역 뿐만 아니라 도심지에서의 토석류 피해 또한 급증하고 있다. 또한 2011년 7월 우면산 토석류, 춘천시 펜션 토석류 등 규모면에서 이전 보다 큰 토석류가 발생되고 있다. 이러한 토석류로 인한 피해를 줄이기 위해서는 토석류의 수치적 해석이 필요하며 현재 다양한 토석류 수치해석 모델을 이용하여 토석류를 분석하고 있다. 또한 토석류는 주로 강우로 인해 발생되기 때문에 토석류 해석을 위해선 강우-유출해석이 선행되어야 한다. 본 연구에서는 청송 풍력단지를 조성하는 면봉산 일대를 대상지역으로 선정하였다. 토석류를 유발시키는 강우를 해석하기 위해 분포형 강우-유출모형인 S-RAT모형을 사용하였으며, 토석류 해석을 위해 토석류 2차원 수치해석모형인 RAMMS모형을 사용하였다. 두 모형의 커플링을 통해 토석류 확산범위 및 유동심, 속도, 충격력을 산정하였다. 이를 통해 유역내 토석류 발생시 동일규모의 사방시설을 토석류 흐름구간에 설치하여 위치에 따른 저감효과를 분석하여 사방시설의 적정위치에 대한 분석을 실시하였다.

  • PDF

Quantitative Risk Analysis for Railway Tunnels (철도터널 화재에 대한 정량적 위험도 분석)

  • Park, Jung Hyun;Shim, Cha Sang
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.400-412
    • /
    • 2017
  • What is particularly noteworthy from Korean and foreign railway tunnel disaster prevention standards is that for the sake of rapid evacuation, more stringent standards for provision of evacuation passages, which require high cost, are being applied. Korean standards stipulate that passage installation should be determined in accordance with the level of risk through a QRA analysis of each tunnel with 1km or longer length. As, however, detailed application criteria as fire occurrence probability, fire occurrence scenario, size of fires and evaluation criteria for level of social risk are not available, additional costs may be incurred due to excessive design. Thus, standards of an appropriate level need to be established. With this backdrop, this study selects detailed application conditions of a reasonable and appropriate level through a study and analysis of relevant documents and analyzes the maximum length of tunnels to which the application of evacuation passages, or the application major evacuation promotion facilities, can be relaxed, together with a QRA analysis of model tunnels (for high speed rail) with different tunnel lengths. In addition, the QRA results on tunnels, including those on the Honam high-speed rail, and analysis results for the model tunnels, are compiled, ; the ultimate results are compared with Korean and other countries' standards related to evacuation promotion facilities, As a result, The appropriateness of application standards are reviewed. These results are expected to be utilized as basic material for establishing a reasonable disaster prevention plan that will consider safety and economies.

Estimating Optimum Investment Cost for Obsolete School Buildings (노후화된 학교건물의 적정시설투자비 산정모델 적용사례)

  • Huh, Young-Ki
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.1
    • /
    • pp.10-25
    • /
    • 2011
  • Area Offices of Education in Korea assign and execute government budget based on the evaluation of school buildings' safety rating and degree of their deterioration. However, it is never easy to estimate the most appropriate investment amount for old buildings under consideration of their service lives and residual values together. A model of estimating optimum investment cost for obsolete school building is developed taking its life cycle cost into account. The model is also applied to six old buildings in five different schools and found that some of the facilities hardly needed further investment and were better to be rebuilt. The study results will be a great beneficial for officers to make right decision on maintaining obsolete school buildings and to maximize tax payers' money.

A Study of Port Facility Maintenance and Decision-making Support System Development (항만시설 유지관리 의사결정 지원 시스템 개발 연구)

  • Na, Yong Hyoun;Park, Mi Yeon;Choi, Doo Young
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.290-305
    • /
    • 2022
  • Purpose: Currently, port facility informatization technology is focused on the planning and design phases, so the necessity of research and technology development on the port facility maintenance system based on life cycle-level information is emphasized. Method: Based on the maintenance history data of port facilities and facility operation information, from the perspective of the life cycle of port facilities, the system is configured to enable maintenance decisions for port facilities through analysis of aging patterns, performance degradation prediction models, and risk analysis and proposed a method of expressing information. Result: A function was developed to simultaneously display the SOC performance evaluation and the comprehensive performance evaluation developed in this study, so that mid-to long-term maintenance and reinforcement and facility expansion can be applied and comparatively judged. Conclusion: The integrated port performance system developed in this study induces and supports the risk minimization of port facility management by proactively promoting appropriate repair and reinforcement measures through historical and operational information on port facilities.

A Development of Model for Fire Hazard Assessment in the Buildings (건물의 화재 위험성 평가를 위한 모델(Model) 개발)

  • 이수경;김수태
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.29-36
    • /
    • 1996
  • The hazard assessment in which the potential hazard factors in the buildings are investigated and the scale of the hazard is analyzed should be performed first in order to prevent personal and material damages due to building fire. In this study, the building fire hazard are assessed using 822-item checklist, for the qualitative evaluation of which the main factors are classified into 10 items, yielding 100 scale points with some weighting. It is shown that present model is applicable for the assessment of all general buildings through the examination of the suitability of assessment model by actual assessment of existing building. Also, the checklist is prepared in itemized questionnaire form for easy assessment of building fire hazard. Therefore, the present model will be helpful for those working in fire prevention, who are suffering from the lack of manifest evaluation model for the fire prevention assessment so far in Korea.

  • PDF

Development of a Model for Calculating the Construction Duration of Urban Residential Housing Based on Multiple Regression Analysis (다중 회귀분석 기반 도시형 생활주택의 공사기간 산정 모델 개발)

  • Kim, Jun-Sang;Kim, Young Suk
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.93-101
    • /
    • 2021
  • As the number of small households (1 to 2 persons per household) in Korea gradually increases, so does the importance of housing supply policies for small households. In response to the increase in small households, the government has been continuously supplying urban housing for these households. Since housing for small households is a sales and rental business similar to apartments and general business facilities, it is important for the building owner to calculate the project's estimated construction duration during the planning stage. Review of literature found a model for estimating the duration of construction of large-scale buildings but not for small-scale buildings such as urban housing for small households. Therefore this study aimed to develop and verify a model for estimating construction duration for urban housing at the planning stage based on multiple regression analysis. Independent variables inputted into the estimation model were building site area, building gross floor area, number of below ground floors, number of above ground floors, number of buildings, and location. The modified coefficient of determination (Ra2) of the model was 0.547. The developed model resulted in a Root Mean Square Error (RMSE) of 171.26 days and a Mean Absolute Percentage Error (MAPE) of 26.53%. The developed estimation model is expected to provide reliable construction duration calculations for small-scale urban residential buildings during the planning stage of a project.

Review of the Estimation Method of Methane Emission from Waste Landfill for Korean Greenhouse Gas and Energy Target Management System (온실가스·에너지 목표관리제를 위한 폐기물 매립시설 메탄배출량의 적정 산정방법에 관한 고찰)

  • Seo, Dong-Cheon;Nah, Je-Hyun;Bae, Sung-Jin;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.867-876
    • /
    • 2013
  • To promote the carbon emission trading scheme and reduce greenhouse gas (GHG) emission as following 'Korean GHG & Energy Target Management System', GHG emissions should be accurately determined in each industrial sector. For the estimation method of GHG emission from waste landfill, there are several error parameters, therefore we reviewed the estimation method and proposed a revised method. Methane generation from landfill must be calculated by the selected method based on methane recovery rate, 0.75. However, this methodology is not considered about uncertainty factor. So it is desirable that $CH_4$ generation is estimated using first order decay model and methane recovery should use field monitoring data. If not, $CH_4$ recovery could be applied from other study results; 0.60 of operational landfill with gas vent and flaring system, 0.65 of operational site with landfill gas recovery system, 0.90 of closed landfill with final cover. Other parameters such as degradable organic carbon (DOC) and fraction of DOC decompose ($DOC_f$) need to derive the default value from studies to reflect a Korean waste status. Proper application of MCF that is selected by operation and management of landfill requires more precise criteria.

Operability of Composting Facilities by Modeling (모델링에 의한 퇴비화 시설의 운전성에 관한 연구)

  • Yoo, Yeong Seok;Kim, I Tae;Gee, Chai Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.59-68
    • /
    • 1995
  • Composting facilities are operated with air and moisture control. Composting effects on two operating factors was analysed changing aeration rate with and without water addition to maintain the optimun moisture level. Though the composting facilties are provided with appropriate surroundings for compositing, operating temperature is set for decomposition rate. Accordingly control of decomposition phases was analysed by modeling the process of high and low decomposition phases with various operating temperature. A composting model of "The Library of Compost Engineering Software" developed by Roger T. Haug Inc. in U.S.A. was applied in modeling. As result of this study, operation with optimum moisture has more sensitive temperature to aeration fluctuation and lead to higher reaction rate with lower aeration than operation with poor moisture. Decomposition rate in composting facilities depend on slow decomposition phase because high rate decomposing substances already have been decomposed before entire process is not completed. In order to enhance decomposition rate of organics, effective decomposition in slow decomposition phase needs to be focused.

  • PDF

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.