• Title/Summary/Keyword: 적분구

Search Result 273, Processing Time 0.027 seconds

3D 패턴 유리기판을 사용한 비정질 실리콘 박막 태양전지의 효율 향상 연구

  • Son, Chan-Hui;Kim, Gyeong-Min;Kim, Jae-Ho;Hong, Jin;Hong, Byeong-Hui;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.307-307
    • /
    • 2010
  • 광포획 기술을 통하여 빛의 흡수 증가시키는 것은 고효율 비정질 실리콘 박막 태양전지 제작에 있어 매우 중요하다. 비정질 실리콘 박막 태양전지에서 일반적으로 사용되는 광포획 기술은 전면 투명전극 및 후면 반사막 표면에 패턴을 형성하는 것이며, 이때의 패턴은 불규칙하게 형성된다. 이러한 불규칙한 패턴 대신 주기적인 패턴을 형성하면 보다 효과적인 광포획 효과를 얻을 수 있다. 본 연구에서는 주기적인 패턴 형성된 유리 기판 위에 비정질 실리콘 박막 태양전지를 제작하여 태양전지의 광학적 특성 및 변환효율 변화를 살펴보았다. 먼저, 패턴이 형성된 유리 기판에 대한 광추적 전산모사를 통하여 광학적 특성 변화를 살펴보았으며, 실험을 통하여 태양전지를 제작하고 광학적 특성 및 변환효율을 측정하였다. 광추적 전산모사 결과와 실험을 통하여 얻은 결과를 비교 분석하여 유리 기판의 반사방지 및 광포획 효과를 알아보았으며, 박막형 비정질 실리콘 태양전지의 변환 효율에 대한 긍정적인 영향을 확인 할 수 있었다. 박막형 비정질 실리콘 태양전지 제작에는 PECVD가 사용되었으며, 태양전지의 광학적 특성 및 변환효율 측정에는 UV-VIS 분광기, 적분구, solar simulator 등이 사용되었다.

  • PDF

결정질 실리콘 태양전지 표면 그리드에 의한 반사율과 양자효율에 미치는 영향

  • Park, In-Gyu;Son, Chan-Hui;Yun, Myeong-Su;Yu, Ha-Jin;Han, Sang-Geun;Yu, Jin-Hyeok;Hyeon, Deok-Hwan;Kim, Jeong-Sik;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.299-299
    • /
    • 2010
  • 태양전지 셀에서 표면 반사에 의한 태양광 손실을 보다 적게 하여 흡수량 증가시킬 필요가 있다. 태양전지에서 생성된 전자 정공 수집 향상을 위해 금속 재질로 이루어진 그리드 전극을 사용한다. 이때 금속 그리드에 입사되는 태양광은 대부분 반사되어 입사광의 손실로 이어진다. 본 연구에서는 결정질 실리콘 태양전지에서 표면 그리드에 의한 광학적 손실을 반사율을 통해 확인하였고 양자효율을 측정하여 보았다. 결정질 실리콘 태양전지 표면 반사율 측정은 적분구를 사용하였고, 측정에 사용된 태양전지 샘플은 일반적인 구조의 결정질 실리콘 태양전지이다. 실험은 표면 그리드 공정 전 후의 샘플로 실험을 진행하였고, 셀의 표면 균일도에 의한 확인을 위하여 동일한 면적 비율의 입사광을 조사하여 반복 실험을 하였다. 양자효율 측정은 광학 초퍼를 통한 광원과 분광기 및 검출기를 포함하는 태양전지 특성 분석 장치를 사용하였다. 그 결과 특정 파장 대역에서 그리드의 유무에 따른 반사율의 변화와 이에 따른 양자효율의 변화를 통하여 그리드에 의한 결정질 실리콘 태양전지의 특성변화에 대해 알아보았다.

  • PDF

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.

Tutorial on the Principle of Borehole Deviation Survey - An Application of the Coordinate Transforms (시추공 공곡 측정의 원리 - 좌표계 변환의 응용)

  • Song, Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2020
  • To share an understanding of trajectory measurement in surveys using borehole, this tutorial summarizes the relevant mathematical principles of the borehole deviation survey based on coordinate transform. For uncased or open holes, calculations of the azimuth-deviation-tool face rotation using three-component accelerometer and magnetometer measurements are summarized. For the steel-cased holes, calculations are based on the time-derivative formula of the coordinate transform matrix; yaw-pitch-roll angles through time are mathematically determined by integrating the threecomponent angular velocity measurements from the gyroscope while also removing the Earth's rotation effect. Sensor and data fusion to increase the accuracy of borehole deviation survey is explained with an example of the method. These principles of borehole deviation surveys can be adapted for attitude estimation in air-borne surveys or for positioning in tunnels where global positioning system (GPS) signals cannot be accessed. Information on the optimization filter that must be incorporated in sensor fusion is introduced to help future research.

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.

A Study on Buzz Margin and Thrust Control of Supersonic Engine using PI Controller (PI 제어기를 이용한 초음속 엔진 버즈마진 및 추력제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.573-577
    • /
    • 2009
  • Dynamic behavior simulation of supersonic engine was performed and PI control algorithm was studied for the buzz control in the inlet and the thrust control. Firstly, required thrust was tracked according to the fuel flow control and then inlet pressure was regulated through the nozzle throat area control so that the buzz margin has the positive all the time. The control was performed according to the change of flight Mach number, altitude and angle of attack. The proportional gain and the integral gain for regulating the buzz margin was induced and simulated. In the results, it was confirmed and satisfied that control target in the operating area was changed the angle of attack from $0^{\circ}$ to $10^{\circ}$ at the flight Mach number of 2.1~3.0.

  • PDF

Electromagnetic Force Calculation Using Magnetic Vector Potentials in 3-D Problems (자기벡터포텐셜을 이용한 3차원 전자력 계산)

  • 양재진;이복용;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.106-111
    • /
    • 1996
  • Electric machines such as motors which have rmving parts are designed for producing mechanical force or torque. The accurate calculations of electromagnetic force and torque are important in the design these machines. Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. The former calculates forces by integrating the surface force densities which can be expressed in terms of Maxwell Stress Tensor(MST), and the latter by differentiating the electromagnetic energy with respect to the virtual dis¬placement of rigid bodies of interest. In the problems including current source, magnetic vector potentials(MVP) have rmstly been used as unknown variables for field analysis by a numerical method; e. g. FEM. This paper, thus, introduces the two both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetric FEM. It is found that the force calculation results are in good agreement for several mesh schemes.

  • PDF

Dynamic Characteristics of a Finite Beam Subjected to an Axial Force and Moving Loads with Constant Acceleration (일정가속도(一定加速度)의 이동하중(移動荷重)과 축하중(軸荷重)이 작용(作用)하는 유한(有限)보의 동특성(動特性))

  • Hong, Dong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.67-74
    • /
    • 1982
  • The dynamic behaviour of an elastically supported finite beam subjected to an axial force and moving loads with acceleration is investigated. Within the Euler beam theory the solutions are obtained by using finite Fourier and Laplace transformation methods with respect to space and time variable. Integrations involved in the theoretical results are carried out by Simpson's rule. From the results of the theoretical analysis, it is evident that dynamic behaviour of the beam are affected remarkably by acceleration and axial force.

  • PDF

Study on Adaptation of Parameteric Funition in Performance Index for Non-linear Control System Design (비선형제어계에 있어서 평가보조함수적용에 관한 연구)

  • 심흥석;김경기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1973
  • It is often difficult, or almost impossible, in most cases to obtain the optimal solution to the non-linear control systems by analytical method. In this paper, the authors have treated with the technique of parameteric adaptation which is introduced into the performance index, in order to circumvent the difficulties arising in seal.ch of optimal policy for the non-linear feedback control systems. This approach is shown to provide the advantage of making it possible to design the non-linear feedback control system even if the design specifications are not completely discribed in mathematical form. This is fundamentally due to a certain degree of freedoln in design, which this method allows the designer in establishing the performance index. The effectiveness and feasibilities of this concept are demonstrated by working out some illustrative examples with the performance index of integral quadratic form.

  • PDF

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.