• Title/Summary/Keyword: 적도 해류계

Search Result 40, Processing Time 0.028 seconds

A Review on the Analysis of the Equatorial Current System and the Variability during the El Niño Period: Focusing on the Misconceptions in the Field of Secondary Education (적도 해류계 분석 및 엘니뇨 시기의 변동에 관한 논의: 중등 교육 현장의 관련 오개념을 중심으로)

  • Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.296-310
    • /
    • 2021
  • El Niño is a typical ocean and atmospheric interaction phenomenon that causes climate variability on a global scale, so it has been used as a very important teaching and learning material in the field of earth science. This study summarized the distribution and dynamics of the equatorial current system. The variability of the equatorial current system during the El Niño period and the associated misconceptions were also investigated. The North Equatorial Current, South Equatorial Current, and Equatorial Under Current significantly weaken during El Niño years. However, the variability of the North Equatorial Counter Current (NECC) during the El Niño period cannot be generalized because the NECC shows southward movement with weakening in the northern area and strengthening in the southern area, along its central axis. In the western Pacific, the NECC is further south during El Niño years, and thus, it has an eastward flow in the equatorial western Pacific. Our analysis of a mass media science article, a secondary school exam, and a survey for incumbent teachers confirmed disparate ideas about the equatorial current system's variability during El Niño periods. This is likely due to inaccurate interpretations of the existing El Niño schematic diagram and insufficient understanding of the equatorial current and wave dynamics.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea (평균역학고도장과 인공위성고도계 자료를 이용한 동해 표층해류 추산)

  • Lee, Sang-Hyun;Byun, Do-Seong;Choi, Byoung-Ju;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.195-204
    • /
    • 2009
  • In order to estimate sea surface current fields in the East Sea, we examined characteristics of mean dynamic topography (MDT) fields (or mean surface current field, MSC) generated from three different methods. This preliminary investigation evaluates the accuracy of surface currents estimated from satellite-derived sea level anomaly (SLA) data and three MDT fields in the East Sea. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) provides a MDT field derived from satellite observation and numerical models with $0.25^{\circ}$ horizontal resolution. Steric height field relative to 500 dbar from temperature and salinity profiles in the East Sea supplies another MDT field. Trajectory data of surface drifters (ARGOS) in the East Sea for 14 years provide another MSC field. Absolute dynamic topography (ADT) field is calculated by adding SLA to each MDT. Application of geostrophic equation to three different ADT fields yields three surface geostrophic current fields. Comparisons were made between the estimated surface currents from the three different methods and in-situ current measurements from a ship-mounted ADCP (Acoustic Doppler Current Profiler) in the southwestern East Sea in 2005. For offshore areas more than 50 km away from the land, the correlation coefficients (R) between the estimated versus the measured currents range from 0.58 to 0.73, with 17.1 to $21.7\;cm\;s^{-1}$ root mean square deviation (RMSD). For coastal ocean within 50 km from the land, however, R ranges from 0.06 to 0.46 and RMSD ranges from 15.5 to $28.0\;cm\;s^{-1}$. Results from this study reveal that a new approach in producing MDT and SLA is required to improve the accuracy of surface current estimations for the shallow costal zones of the East Sea.

Assessments of Nitrate Budget by Currents and Biogeochemical Process in the Korea Strait based on a 3D Physical-Biogeochemical Coupled Model (3차원 물리-생지화학 결합 모델을 이용한 대한해협 주변의 해류와 생지화학적 요인에 의한 질산염 유출입 평가)

  • TAK, YONG JIN;CHO, YANG KI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Nitrate (NO3-) plays an important role in aquaculture and ecosystems in the Korea Strait. Observational data propose that ocean currents are crucial to NO3- budget in the Korea Strait. However, assessment of budget by currents and biogeochemical processes has not yet been investigated. This study examines seasonal and spatial variations in NO3- budget by currents and biological processes in the Korea Strait from 2011 to 2019 using a physical-biogeochemical coupled model. Model results suggest that current-driven net supply of NO3- is consumed by uptake of phytoplankton in the Korea Strait. Advective influx is driven by the Tsushima warm current and the influx by the Jeju warm current is approximately one third of it. All of the influxes are transported out to the East Sea through the Korea Strait, of which two third passes through the western channel and the rest through the eastern channel. Annual mean NO3- net transport show that currents supply NO3- year round except for January, but the budget by biogeochemical processes consumes it every season except for winter.

Descriptive hydrography of shelikof Strait, Gulf of Alaska, during the Spring Spawning Time of Walleye Pollock, Theragra chalcogramma, in the Early 1980's (명태(Theragra chalcogramma)의 산란장, 알라스카만 쉘리코프 해협의 1980년대 초반의 해황에 관한 연구)

  • KIM, SUAM
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.35-46
    • /
    • 1993
  • To delineate water properties and current patterns in the spawning area of walleye pollock, hydrographic cast and current meter data collected in Strait, Gulf of alaska, were analysed, three water masses are identified in Shelikof Strait. A small amount of cold and dilute water ($<{\;}3^{\circ}C{\;}and{\;}<{\;}31.5\textperthousand$) originates from the lower Cook Inlet and flows southwestward close to the Alaska Peninsula coast. One branch of alaska coastal Current which enters the strait from the northeast comprises the main body of the upper and middle layers of the strait, and flows toward the southwest. Estimation of geostrophic baroclinic currents reveals that comparatively fast flow exists in the surface over the deepest portion of the strait, and most water exits through the southwestern entrance between Semidi and chirikof Is. On the other hand, a relatively slow-moving warm and saline ($>{\;}5^{circ}C{\;}and{\;}>{\;}32\textperthousand$) of the southwestern entrance flows northeasterly, and occupies the bottom layer in Shelikof Strait.

  • PDF

연안류 분포형상에 영향을 미치는 제 인자

  • 윤영호;김경호
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.142-145
    • /
    • 1993
  • 쇄파대 내에서는 여러가지 흐름이 상호 간섭하면서 작용하기 때문에 극히 복잡한 흐름장이 형성 된다. 해빈의 제반 동역학에 있어서 최우선되는 작용력은 파동 이지만, 흐름 또한 표사와 확산현상을 지배하는 중요한 요인이다. 특히 쇄파대 내외의 천수역에서는 해류나 조류 등 지구 물리학적 크기의 흐름보다는 소위 해빈류가 문제가 되는 경우가 많다. 해빈류계는 그 평면적인 흐름의 형태에 따라 연안류계(longshore current system), 순환류계(symmetrical celluar system), 사행류계(meandering system) 등 3가지로 분류된다(Basco, 1982). (중략)

  • PDF

동해 남부해역의 심층류 관측

  • 이진기;안희수;신홍렬;윤종환
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.203-206
    • /
    • 2002
  • 동해 남부해역의 5개 정점에서 유속계 계류에 의한 장기 해류 관측이 한일 공동으로 행해졌다. 1000 m이상의 유속장을 조사하기 위해 각 정점에는 유속계가 두 개씩 부착되어 1∼3년간(1998∼2001년) 계류되었다 유속계 관측 자료는 심층류가 대체로 해저지형을 따라 흐르고 있음을 보여주고 있다. 즉, 울릉분지 남동사면과 야마토해령 서북부해역에서는 주로 북향류가 우세하고, 야마토분지 중앙과 남서쪽 가장자리 해역에서는 남향류가 지배적이며, 야마토분지 남동해역에서는 동향류가 강한 순환 형태를 이루고 있는 것이다 계절별로는 12∼2월의 겨울철에 연중 최대 유속이 보여지며, 일주조의 조석성분과 관성운동의 흔적 외에 3∼5일 주기의 불규칙한 변동은 연중 나타나고 있다.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

A Study on the Residual Current in the Cheju Strait (제주해협의 해수유동특성에 관한 연구)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.759-770
    • /
    • 1997
  • The general flow patterns in the Cheju Strait have been investicated by analyzing the current observations measured in $1986\~1989$ by current meter mooring in 3 north-south sections in the Cheju Strait and at 4 observation points around Cheju Harbour, and measured in $1981\~1987$ by drogue tracking. 1. In the Cheju Strait, there are eastward or northeastward residual currents, which implies that sea waters flow into through the whole western section and flow out through the whole eastern section in the Cheju Strait. The velocity of residual currents are $5.2\~30\;cm/sec$ in 10 m layer and $1.3\~24cm/sec$ in mid-bottom layer. Generally, the flow is strong along the deepest through and the northern part, and weak in the shallow areas near Chuja Islands and Bogil Island. 2. In the western entrance of the Cheju Strait, the observed mean residual velocity is 6.93 cm/sec and the volume transport is 0.384 Sv. There are a big discrepancy between the observed residual currents and the geostrophic currents. 3. Near the frontal areas northwest to Chuja Islands, warm and saline offshore waters, flow northward about 5 miles into the southern coastal areas of the Korean Peninsula in flood, and flow back rather eastward or southeastward than southward in ebb. So, warm and saline waters flow along coastal areas, being mixed with coastal waters. As a result, the northwestern area of Chuja Islands plays a role of the entrance of influx of warm and saline offshore water to the southwestern coastal areas of the Korean Peninsula. It should be stressed that this flow pattern is not due to the residual flows, but to the temporal (tidal) flows.

  • PDF

Oceanographic Studies Related to the Tidal front in the Mid-Yellow Sea off Korea: Physical Aspects (황해 중부의 조석전선과 연관된 해양학적 연구 : 물리적 특성)

  • SEUNG, YOUNG HO;CHUNG, JUNG HO;PARK, YONG CHUL
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.84-95
    • /
    • 1990
  • Observations by CTD castings, moored current meters and satellite imageries reveal some physical characteristics of the area around the tidal mixing front found in the mid-Yellow Sea off Korea. Tidal mixing is the greatest at the promontory of Taean Peninsula with a front around it. The front appears in April with the start of solar heating, becomes most clear in August and disappears in November with the start of surface cooling. In the north of the front, tidal fluctuations of temperature and salinity induced by tidal currents manifest the existence of the front, Differently from the usual tidal mixing front, the front in Kyunggi Bay is formed by presence of the water discharged from the Han River which meets the offshore water at the front. Near the surface cold center, vertically well-mixed zone extends to about 50 Km offshore from the coast, Farther south, this structure is generally retained but with lesser degree of vertical mixing. Within the relatively well-fixed coastal zone, the fresh water discharged from the Kum River makes another salinity front of smaller extent. At some places around this salinity front, an Upwelling-like feature is remarked.

  • PDF