Browse > Article
http://dx.doi.org/10.7850/jkso.2022.27.1.001

Assessments of Nitrate Budget by Currents and Biogeochemical Process in the Korea Strait based on a 3D Physical-Biogeochemical Coupled Model  

TAK, YONG JIN (Department of Atmospheric sciences, Yonsei University)
CHO, YANG KI (School of Earth and Environmental Sciences/ Research Institute of Oceanography, Seoul National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.27, no.1, 2022 , pp. 1-16 More about this Journal
Abstract
Nitrate (NO3-) plays an important role in aquaculture and ecosystems in the Korea Strait. Observational data propose that ocean currents are crucial to NO3- budget in the Korea Strait. However, assessment of budget by currents and biogeochemical processes has not yet been investigated. This study examines seasonal and spatial variations in NO3- budget by currents and biological processes in the Korea Strait from 2011 to 2019 using a physical-biogeochemical coupled model. Model results suggest that current-driven net supply of NO3- is consumed by uptake of phytoplankton in the Korea Strait. Advective influx is driven by the Tsushima warm current and the influx by the Jeju warm current is approximately one third of it. All of the influxes are transported out to the East Sea through the Korea Strait, of which two third passes through the western channel and the rest through the eastern channel. Annual mean NO3- net transport show that currents supply NO3- year round except for January, but the budget by biogeochemical processes consumes it every season except for winter.
Keywords
Korea strait; Nitrate transport; Nitrate uptake; Nitrification; Tsushima warm current;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Zweng, M.M., J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson and D. Seidov, 2013. World ocean atlas 2013. Volume 2, Salinity. NOAA Atlas NESDIS 74, 39.
2 Isobe, A., 1999. On the origin of the Tsushima Warm Current and its seasonality. Cont. Shelf Res., 19(1): 117-133.   DOI
3 Kim, C.-S., Y.-K. Cho, B.-J. Choi, K.T. Jung and S.H. You, 2013a. Improving a prediction system for oil spills in the Yellow Sea: Effect of tides on subtidal flow. Mar. Pollut. Bull., 68(1-2): 85-92.   DOI
4 Kim, D., K.H. Kim, J.H. Shim and S.J. Yoo, 2007. The Distribution and Interannual Variation in Nutrients, Chlorophyll-a, and Suspended Solids in the Northern East China Sea during the Summer. Ocean Polar Res., 29(3): 193-204.   DOI
5 Kim, K.-R., Y.-K. Cho, D.-J. Kang and J.-H. Ki, 2005. The origin of the Tsushima Current based on oxygen isotope measurement. Geophys. Res. Lett. 32(3): L03602.   DOI
6 Kim, S.-K., K.-I. Chang, B. Kim and Y.-K. Cho, 2013b. Contribution of ocean current to the increase in N abundance in the Northwestern Pacific marginal seas. Geophys. Res. Lett., 40(1): 143-148.   DOI
7 Kodama, T., H. Morimoto, Y. Igeta and T. Ichikawa, 2015. Macroscale-wide nutrient inversions in the subsurface layer of the Japan Sea during summer. J. Geophys. Res. Oceans, 120(11): 7476-7492.   DOI
8 Lee, M.O., and J.H. Choi, 2009. Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms. J. Korean Soc. Mar. Environ. Energy, 12(4): 235-247.
9 Lee, M.O., B.K. Kim and J.K. Kim, 2015. Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms. J. Korean Soc. Mar. Environ. Energy, 18(3): 166-178.   DOI
10 Locarnini, R.A., A.V. Mishonov, J.I. Antonov, T.P. Boyer, H.E. Garcia, O.K. Baranova et al., 2013. World ocean atlas 2013. Volume 1, Temperature. NOAA Atlas NESDIS 73, 40.
11 Egbert, G.D. and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19(2): 183-204.   DOI
12 Guo, X., Y. Miyazawa and T. Yamagata, 2006. The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current, J. Phys. Oceanogr., 36(12): 2205-2231.   DOI
13 Li, H.-M., C.-S. Zhang, X.-R. Han and X.-Y. Shi, 2015. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980-2012: Sources and seaward gradients. Estuar. Coast. Shelf Sci., 163: 44-55.
14 Takikawa, T. and J.H. Yoon, 2005. Volume transport through the Tsushima Straits estimated from sea level difference. J. Oceanogr., 61(4): 699-708.   DOI
15 Yang, Y.J., S.H. Kim and H.K. Rho, 1998. A Study on the Temperature fronts observed in the South-West Sea of Korea and the Northern Area of the East China Sea. Korean J. Fish. and Aquat. Sci., 31(5): 695-706.
16 Baek, S.H., K. Shin, B. Hyun, P.-G. Jang, H.-S. Kim and O.-M. Hwang, 2010. Distribution Characteristics and Community Structure of Phytoplankton in the Different Water Masses During Early Summer of Southern Sea of Korea. Ocean Polar Res., 32(1): 1-13.
17 Bach, L.T., U. Riebesell, S. Sett, S. Febiri, P. Rzepka and K.G. Schulz, 2012. An approach for particle sinking velocity measurements in the 3-400 ㎛ size range and considerations on the effect of temperature on sinking rates. Mar. Biol., 159(8): 1853-1864.   DOI
18 Cho, Y.-K. and K. Kim, 1994. Characteristics and origin of the cold water in the South Sea of Korea in summer. J. Korean Soc. Oceanogr., 29(4): 414-421.
19 Choo, H.-S. and D.-S. Kim, 1998. The Effect of Variations in the Tsushima Warm Currents on the Egg and Larval Transport of Anchovy in the Southern Sea of Korea. Korean J. Fish. and Aquat. Sci., 31(2): 226-244.
20 Cho, Y.-K., G.-H. Seo, B.-J. Choi, S. Kim, Y.-G. Kim, Y.-H. Youn and E.P. Dever, 2009. Connectivity among straits of the northwest Pacific marginal seas. J. Geophys. Res., 114(C6): C06018.
21 Chung, C.S., G.H. Hong, S.H. Kim, J.K. Park, Y.I. Kim, D.S. Moon, K.I. Chang, S.Y. Nam and Y.C. Park, 2000. Biogeochemical Fluxes Through the Cheju Strait. The Sea, 5(3): 208-215.
22 Dai, Z., J. Du, X. Zhang, N. Su and J. Li, 2011. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955-2008). Environ. Sci. Technol., 45(1): 223-227.   DOI
23 Morimoto, A., A. Watanabe, G. Onitsuka, T. Takikawa, M. Moku and T. Yanagi, 2012. Interannual variations in material transport through the eastern channel of the Tsushima/Korea Straits, Prog. Oceanogr., 105: 38-46.   DOI
24 Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young, 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. Oceans, 101(C2): 3747-3764.   DOI
25 NFRDI, 2014. Study on the chlorosis phenomena in cultivated Phyropia. NFRDI, Korea, National Fisheries Research and Development Institute Technical Paper, 50 pp.
26 Rho, T.K., T. Lee, G. Kim, K.-I., Chang, T.H. Na and K.-R. Kim, 2012. Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses. Ocean Polar Res., 34(4): 413-430.   DOI
27 Tak, Y.-J., Y.-K. Cho, G.-H. Seo and B.-J. Choi, 2016. Evolution of wind-driven flows in the Yellow Sea during winter, J. Geophys. Res. Oceans, 121(3): 1970-1983.   DOI
28 Seo, G.-H., Y.-K. Cho, B.-J. Choi, K.-Y. Kim, B. Kim and Y.-J. Tak, 2014. Climate change projection in the Northwest Pacific marginal seas through dynamic downscaling. J. Geophys. Res. Oceans, 119(6): 3497-3516.   DOI
29 Shchepetkin, A.F., and J.C. McWilliams, 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model., 9(4): 347-404.   DOI
30 Sun, Y.-J. and Y.-K. Cho, 2010. Tidal Front and its Relation to the Biological Process in Coastal Water. Ocean Sci. J., 45(4): 243-251.   DOI
31 Tak, Y.-J., Y.-K. Cho, J. Hwang and Y.-Y. Kim, 2022. Assessments of Nitrate Budgets in the Yellow Sea Based on a 3D Physical-Biogeochemical Coupled Model, Front. Mar. Sci., 8: 785377.   DOI
32 Takikawa, T., A. Morimoto and G. Onitsuka, 2016. Subsurface nutrient maximum and submesoscale structures in the southwestern Japan Sea. J. Oceanogr., 72: 529-540.   DOI
33 임월애, 강창근, 김숙양, 이삼근, 김학균, 정익교, 2003. 여름철 남해도 연안 식물플랑크톤 군집구조의 단기 변화, Algae, 18: 49-58.   DOI
34 Rho, T.K., Y.-B. Kim, J.I. Park, Y.-W. Lee, D.H. Im, D.-J. Kang, T. Lee, S.-T. Yoon, T.-H. Kim, J.-H. Kwak, H.J. Park, M.K. Jeong, K.I. Chang, C.-K. Kang, H.-L. Suh, M. Park, H. Lee and K.-R. Kim, 2010. Plankton Community Response to Physico-Chemical Forcing in the Ulleung Basin, East Sea during Summer 2008. Ocean Polar Res., 32(3): 269-289.   DOI
35 Gan, J., Z. Lu, A. Cheung, M. Dai, L. Liang, P.J. Harrison and X. Zhao, 2014. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS). J. Geophys. Res. Oceans, 119(12): 8858-8877.   DOI
36 Vorosmarty, C.J., B. Fekete and B.A. Tucker, 1996. River Discharge Database, Version 1.0 (RivDIS v1. 0), Volumes 0 through 6. A contribution to IHP-V Theme: 1. Technical Documents in Hydrology Series. UNESCO, Paris.
37 Gong, Y., Z. Yu, Q. Yao, H. Chen, T. Mi and J. Tan, 2015. Seasonal variation and sources of dissolved nutrients in the Yellow River, China. Int. J. Environ. Res. Public Health, 12(8): 9603-9622.   DOI
38 Gruber, N., H. Frenzel, S.C. Doney, P. Marchesiello, J.C. McWilliams, J.R. Moisan, J.J. Oram, G.-K. Plattner and K.D. Stolzenbach, 2006. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System, Deep Sea Res. Part I Oceanogr. Res. Pap., 53(9): 1483-1516.   DOI
39 Uitz, J., H. Claustre, A. Morel and S.B. Hooker, 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans, 111(C8): C08005.
40 Wang, K., J.F. Chen, H.Y. Jin, F.J. Chen, H.L. Li, S.Q. Gao and Y. Lu, 2011. The four seasons nutrients distribution in Changjiang River Estuary and its adjacent East China Sea. J. Mar. Sci. 29(3): 18-35.   DOI
41 Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O'Reilly and D. Haidvogel, 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cycles, 20(3): GB3007.   DOI
42 Yang, H.-S. and S.-S. Kim, 1990. A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula 1. Physical Processes Influencing the Surface Distributions of Chlorophyll and Nutrient in the Southern Sea of Korea in Summer. Korean J. Fish. and Aquat. Sci., 23(6): 417-424.
43 Zhang, J., 1994. Atmospheric wet deposition of nutrient elements: correlation with harmful biological blooms in Northwest Pacific coastal zones. Ambio, 23: 464-468.
44 Morel, A. and J.F. Berthon, 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34(8): 1545-1562.   DOI
45 Zhou, F., F. Chai, D. Huang, H. Xue, J. Chen, P. Xiu, J. Xuan, J. Li, D. Zeng and X. Ni,2017. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE. Prog. Oceanogr., 159: 237-254.   DOI
46 Wang, Q., X. Guo and H. Takeoka, 2008. Seasonal variations of the Yellow River plume in the Bohai Sea: A model study. J. Geophys. Res. Oceans, 113(C8): C08046.