DOI QR코드

DOI QR Code

3차원 물리-생지화학 결합 모델을 이용한 대한해협 주변의 해류와 생지화학적 요인에 의한 질산염 유출입 평가

Assessments of Nitrate Budget by Currents and Biogeochemical Process in the Korea Strait based on a 3D Physical-Biogeochemical Coupled Model

  • 탁용진 (연세대학교 대기과학과) ;
  • 조양기 (서울대학교 지구환경과학부/해양연구소)
  • TAK, YONG JIN (Department of Atmospheric sciences, Yonsei University) ;
  • CHO, YANG KI (School of Earth and Environmental Sciences/ Research Institute of Oceanography, Seoul National University)
  • 투고 : 2021.12.25
  • 심사 : 2022.02.15
  • 발행 : 2022.02.28

초록

질산염은 대한해협의 생태계 및 어업에 있어 중요한 영향을 준다. 관측을 기반으로 한 선행연구들은 해류가 질산염 수송에 중요한 영향을 줄 가능성을 제시하였다. 그러나 해류에 의한 질산염 수송과 생지화학적 요인에 의한 질산염 유출입의 정량적인 평가에 대한 연구는 없었다. 본 연구에서는 해류와 생지화학학적 요인에 대한 질산염 유출입의 계절 및 공간적인 변화를 2011년부터 2019년까지 물리-생지화학 결합 모델을 수행하여 살펴보았다. 모델 결과 분석을 통해 대한해협은 해류로 인해 질산염이 공급되며 공급된 질산염은 식물 플랑크톤의 섭식에 의해 소비됨을 알 수 있었다. 해류에 의한 질산염 수송량 중 제주도와 큐슈지역을 통과하는 해류에 의한 질산염 수송이 가장 컸으며 제주해협을 통과하는 해류에 의한 수송량은 이보다 1/3배 적었다 대한해협 서수도로 유출되는 질산염 수송량은 동수도로 유출되는 양보다 2배 더 많았다. 월 평균 질산염 순 유출입을 살펴보면 제주해협과 제주도와 큐슈를 통과하는 해류로 인해 공급된 질산염이 1월을 제외한 연중 대한해협에서 생지화학적 요인에 의해 순 유출되고 있었고, 이로 인해 대한해협을 통과하여 동해로 유입되는 질산염 수송량이 감소함을 알 수 있었다.

Nitrate (NO3-) plays an important role in aquaculture and ecosystems in the Korea Strait. Observational data propose that ocean currents are crucial to NO3- budget in the Korea Strait. However, assessment of budget by currents and biogeochemical processes has not yet been investigated. This study examines seasonal and spatial variations in NO3- budget by currents and biological processes in the Korea Strait from 2011 to 2019 using a physical-biogeochemical coupled model. Model results suggest that current-driven net supply of NO3- is consumed by uptake of phytoplankton in the Korea Strait. Advective influx is driven by the Tsushima warm current and the influx by the Jeju warm current is approximately one third of it. All of the influxes are transported out to the East Sea through the Korea Strait, of which two third passes through the western channel and the rest through the eastern channel. Annual mean NO3- net transport show that currents supply NO3- year round except for January, but the budget by biogeochemical processes consumes it every season except for winter.

키워드

과제정보

이 논문은 2013년 해양수산부의 재원으로 한국해양과학기술진흥원의 지원을 받아 수행된 연구임(장기해양생태계 연구: 대마난류 영향권역의 환경변화와 생태계 반응). 이 논문에 이용된 정선해양관측자료는 국립수산과학원의 한국해양자료센터에서 제공 받았습니다.

참고문헌

  1. 임월애, 강창근, 김숙양, 이삼근, 김학균, 정익교, 2003. 여름철 남해도 연안 식물플랑크톤 군집구조의 단기 변화, Algae, 18: 49-58. https://doi.org/10.4490/ALGAE.2003.18.1.049
  2. Bach, L.T., U. Riebesell, S. Sett, S. Febiri, P. Rzepka and K.G. Schulz, 2012. An approach for particle sinking velocity measurements in the 3-400 ㎛ size range and considerations on the effect of temperature on sinking rates. Mar. Biol., 159(8): 1853-1864. https://doi.org/10.1007/s00227-012-1945-2
  3. Baek, S.H., K. Shin, B. Hyun, P.-G. Jang, H.-S. Kim and O.-M. Hwang, 2010. Distribution Characteristics and Community Structure of Phytoplankton in the Different Water Masses During Early Summer of Southern Sea of Korea. Ocean Polar Res., 32(1): 1-13.
  4. Cho, Y.-K. and K. Kim, 1994. Characteristics and origin of the cold water in the South Sea of Korea in summer. J. Korean Soc. Oceanogr., 29(4): 414-421.
  5. Cho, Y.-K., G.-H. Seo, B.-J. Choi, S. Kim, Y.-G. Kim, Y.-H. Youn and E.P. Dever, 2009. Connectivity among straits of the northwest Pacific marginal seas. J. Geophys. Res., 114(C6): C06018.
  6. Choo, H.-S. and D.-S. Kim, 1998. The Effect of Variations in the Tsushima Warm Currents on the Egg and Larval Transport of Anchovy in the Southern Sea of Korea. Korean J. Fish. and Aquat. Sci., 31(2): 226-244.
  7. Chung, C.S., G.H. Hong, S.H. Kim, J.K. Park, Y.I. Kim, D.S. Moon, K.I. Chang, S.Y. Nam and Y.C. Park, 2000. Biogeochemical Fluxes Through the Cheju Strait. The Sea, 5(3): 208-215.
  8. Dai, Z., J. Du, X. Zhang, N. Su and J. Li, 2011. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) Estuary in recent decades (1955-2008). Environ. Sci. Technol., 45(1): 223-227. https://doi.org/10.1021/es103026a
  9. Egbert, G.D. and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19(2): 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  10. Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young, 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. Oceans, 101(C2): 3747-3764. https://doi.org/10.1029/95JC03205
  11. Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O'Reilly and D. Haidvogel, 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cycles, 20(3): GB3007. https://doi.org/10.1029/2005GB002456
  12. Gan, J., Z. Lu, A. Cheung, M. Dai, L. Liang, P.J. Harrison and X. Zhao, 2014. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS). J. Geophys. Res. Oceans, 119(12): 8858-8877. https://doi.org/10.1002/2014JC009951
  13. Gong, Y., Z. Yu, Q. Yao, H. Chen, T. Mi and J. Tan, 2015. Seasonal variation and sources of dissolved nutrients in the Yellow River, China. Int. J. Environ. Res. Public Health, 12(8): 9603-9622. https://doi.org/10.3390/ijerph120809603
  14. Gruber, N., H. Frenzel, S.C. Doney, P. Marchesiello, J.C. McWilliams, J.R. Moisan, J.J. Oram, G.-K. Plattner and K.D. Stolzenbach, 2006. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System, Deep Sea Res. Part I Oceanogr. Res. Pap., 53(9): 1483-1516. https://doi.org/10.1016/j.dsr.2006.06.005
  15. Guo, X., Y. Miyazawa and T. Yamagata, 2006. The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current, J. Phys. Oceanogr., 36(12): 2205-2231. https://doi.org/10.1175/JPO2976.1
  16. Isobe, A., 1999. On the origin of the Tsushima Warm Current and its seasonality. Cont. Shelf Res., 19(1): 117-133. https://doi.org/10.1016/S0278-4343(98)00065-X
  17. Kim, C.-S., Y.-K. Cho, B.-J. Choi, K.T. Jung and S.H. You, 2013a. Improving a prediction system for oil spills in the Yellow Sea: Effect of tides on subtidal flow. Mar. Pollut. Bull., 68(1-2): 85-92. https://doi.org/10.1016/j.marpolbul.2012.12.018
  18. Kim, D., K.H. Kim, J.H. Shim and S.J. Yoo, 2007. The Distribution and Interannual Variation in Nutrients, Chlorophyll-a, and Suspended Solids in the Northern East China Sea during the Summer. Ocean Polar Res., 29(3): 193-204. https://doi.org/10.4217/OPR.2007.29.3.193
  19. Kim, K.-R., Y.-K. Cho, D.-J. Kang and J.-H. Ki, 2005. The origin of the Tsushima Current based on oxygen isotope measurement. Geophys. Res. Lett. 32(3): L03602. https://doi.org/10.1029/2004GL021211
  20. Kim, S.-K., K.-I. Chang, B. Kim and Y.-K. Cho, 2013b. Contribution of ocean current to the increase in N abundance in the Northwestern Pacific marginal seas. Geophys. Res. Lett., 40(1): 143-148. https://doi.org/10.1029/2012GL054545
  21. Kodama, T., H. Morimoto, Y. Igeta and T. Ichikawa, 2015. Macroscale-wide nutrient inversions in the subsurface layer of the Japan Sea during summer. J. Geophys. Res. Oceans, 120(11): 7476-7492. https://doi.org/10.1002/2015JC010845
  22. Lee, M.O., and J.H. Choi, 2009. Distributions of Water Temperature and Salinity in the Korea Southern Coastal Water During Cochlodinium polykrikoides Blooms. J. Korean Soc. Mar. Environ. Energy, 12(4): 235-247.
  23. Lee, M.O., B.K. Kim and J.K. Kim, 2015. Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms. J. Korean Soc. Mar. Environ. Energy, 18(3): 166-178. https://doi.org/10.7846/JKOSMEE.2015.18.3.166
  24. Li, H.-M., C.-S. Zhang, X.-R. Han and X.-Y. Shi, 2015. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980-2012: Sources and seaward gradients. Estuar. Coast. Shelf Sci., 163: 44-55.
  25. Locarnini, R.A., A.V. Mishonov, J.I. Antonov, T.P. Boyer, H.E. Garcia, O.K. Baranova et al., 2013. World ocean atlas 2013. Volume 1, Temperature. NOAA Atlas NESDIS 73, 40.
  26. Morel, A. and J.F. Berthon, 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34(8): 1545-1562. https://doi.org/10.4319/lo.1989.34.8.1545
  27. Morimoto, A., A. Watanabe, G. Onitsuka, T. Takikawa, M. Moku and T. Yanagi, 2012. Interannual variations in material transport through the eastern channel of the Tsushima/Korea Straits, Prog. Oceanogr., 105: 38-46. https://doi.org/10.1016/j.pocean.2012.04.011
  28. NFRDI, 2014. Study on the chlorosis phenomena in cultivated Phyropia. NFRDI, Korea, National Fisheries Research and Development Institute Technical Paper, 50 pp.
  29. Rho, T.K., T. Lee, G. Kim, K.-I., Chang, T.H. Na and K.-R. Kim, 2012. Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses. Ocean Polar Res., 34(4): 413-430. https://doi.org/10.4217/OPR.2012.34.4.413
  30. Rho, T.K., Y.-B. Kim, J.I. Park, Y.-W. Lee, D.H. Im, D.-J. Kang, T. Lee, S.-T. Yoon, T.-H. Kim, J.-H. Kwak, H.J. Park, M.K. Jeong, K.I. Chang, C.-K. Kang, H.-L. Suh, M. Park, H. Lee and K.-R. Kim, 2010. Plankton Community Response to Physico-Chemical Forcing in the Ulleung Basin, East Sea during Summer 2008. Ocean Polar Res., 32(3): 269-289. https://doi.org/10.4217/OPR.2010.32.3.269
  31. Seo, G.-H., Y.-K. Cho, B.-J. Choi, K.-Y. Kim, B. Kim and Y.-J. Tak, 2014. Climate change projection in the Northwest Pacific marginal seas through dynamic downscaling. J. Geophys. Res. Oceans, 119(6): 3497-3516. https://doi.org/10.1002/2013JC009646
  32. Shchepetkin, A.F., and J.C. McWilliams, 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model., 9(4): 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  33. Sun, Y.-J. and Y.-K. Cho, 2010. Tidal Front and its Relation to the Biological Process in Coastal Water. Ocean Sci. J., 45(4): 243-251. https://doi.org/10.1007/s12601-010-0022-3
  34. Tak, Y.-J., Y.-K. Cho, G.-H. Seo and B.-J. Choi, 2016. Evolution of wind-driven flows in the Yellow Sea during winter, J. Geophys. Res. Oceans, 121(3): 1970-1983. https://doi.org/10.1002/2016JC011622
  35. Tak, Y.-J., Y.-K. Cho, J. Hwang and Y.-Y. Kim, 2022. Assessments of Nitrate Budgets in the Yellow Sea Based on a 3D Physical-Biogeochemical Coupled Model, Front. Mar. Sci., 8: 785377. https://doi.org/10.3389/fmars.2021.785377
  36. Takikawa, T. and J.H. Yoon, 2005. Volume transport through the Tsushima Straits estimated from sea level difference. J. Oceanogr., 61(4): 699-708. https://doi.org/10.1007/s10872-005-0077-4
  37. Takikawa, T., A. Morimoto and G. Onitsuka, 2016. Subsurface nutrient maximum and submesoscale structures in the southwestern Japan Sea. J. Oceanogr., 72: 529-540. https://doi.org/10.1007/s10872-015-0340-2
  38. Uitz, J., H. Claustre, A. Morel and S.B. Hooker, 2006. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans, 111(C8): C08005.
  39. Vorosmarty, C.J., B. Fekete and B.A. Tucker, 1996. River Discharge Database, Version 1.0 (RivDIS v1. 0), Volumes 0 through 6. A contribution to IHP-V Theme: 1. Technical Documents in Hydrology Series. UNESCO, Paris.
  40. Wang, K., J.F. Chen, H.Y. Jin, F.J. Chen, H.L. Li, S.Q. Gao and Y. Lu, 2011. The four seasons nutrients distribution in Changjiang River Estuary and its adjacent East China Sea. J. Mar. Sci. 29(3): 18-35. https://doi.org/10.3969/j.issn.1001-909X.2011.03.004
  41. Wang, Q., X. Guo and H. Takeoka, 2008. Seasonal variations of the Yellow River plume in the Bohai Sea: A model study. J. Geophys. Res. Oceans, 113(C8): C08046.
  42. Yang, H.-S. and S.-S. Kim, 1990. A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula 1. Physical Processes Influencing the Surface Distributions of Chlorophyll and Nutrient in the Southern Sea of Korea in Summer. Korean J. Fish. and Aquat. Sci., 23(6): 417-424.
  43. Yang, Y.J., S.H. Kim and H.K. Rho, 1998. A Study on the Temperature fronts observed in the South-West Sea of Korea and the Northern Area of the East China Sea. Korean J. Fish. and Aquat. Sci., 31(5): 695-706.
  44. Zhang, J., 1994. Atmospheric wet deposition of nutrient elements: correlation with harmful biological blooms in Northwest Pacific coastal zones. Ambio, 23: 464-468.
  45. Zhou, F., F. Chai, D. Huang, H. Xue, J. Chen, P. Xiu, J. Xuan, J. Li, D. Zeng and X. Ni,2017. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE. Prog. Oceanogr., 159: 237-254. https://doi.org/10.1016/j.pocean.2017.10.008
  46. Zweng, M.M., J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson and D. Seidov, 2013. World ocean atlas 2013. Volume 2, Salinity. NOAA Atlas NESDIS 74, 39.