• Title/Summary/Keyword: 저 선량 영역

Search Result 76, Processing Time 0.028 seconds

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.

A Study on Characteristic of Glass Dosimeter According to Graded Change of Tube Current (유리선량계의 단계별 관전류량 변화에 따른 특성연구)

  • Son, Jin-Hyun;Kim, Seong-Ho;Mun, Hyun-Jun;Kim, Lyun-Kyun;Son, In-Hwa;Kim, Young-Jun;Min, Jung-Whan;Kim, Ki-Won
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • This study was evaluated the linearity and reproducibility according to dose, and reproducibility according to delay time by changing tube current amount (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively, which are low energy radiations) using Glass Dosimeter (GD) and piranha semiconductor dosimeter which are used for measuring exposure dose. Measurements of radiation dose were performed using external detector of piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Conditions of measurement were 80 kVp, SSD 100 cm and exposure region is $10cm{\times}10cm$. Glass dosimeter was exposed to radiation. Twenty-four glass dosimeters were divided into six groups (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively), then measured. This study was resulted by measuring the linearity and reproducibility according to change of tube current in low energy field. In dose characteristic of GD, this study could be useful as previous study with regard to dose characteristic according to change of tube voltage in low energy field.

The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter (능동형 전자식 개인피폭선량계의 저에너지 X선 영역별 최적화를 위한 에너지보상 필터 두께에 대한 연구)

  • Kim, Jung-Su;Park, Youn-Hyun;Chae, Hyun-Sic
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.519-526
    • /
    • 2022
  • Electronic personal dosimeter (EPD) provide real time monitoring and a direct indication of the accumulated dose or dose rate in terms of personal dose. Most EPD do not perform well in low energy photon radiation fields present in medical radiation environments. It has poor responsibility and large error rate for low energy photon radiation of medical radiation environments. This study evaluated to optimal additional filtration for EPD using silicon PIN photodiode detector form 40 to 120 kVp range in medical radiation environments. From 40 to 80 kVp energy range, Al 0.2 mm and Sn 1.0 mm overlapped filtration showed good responsibility to dose rate and from 80 kVp to 120 kVp energy range, Al 0.2 mm and Sn 1.6 mm overlapped filtration showed good responsibility to dose rate.

Experimental study on build up characteristic of glass dosimeter of preheat and Non-preheat in low energy according to delay time (저에너지X선 영역에서 유리선량계의 preheat과 Non-preheat과의 시간에 따른 build up 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Ki-Won;Son, Soon-Yong;Lim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3412-3418
    • /
    • 2013
  • The Purpose of this study was to evaluate by comparing the dose change and build up characteristic according to delay time in 30 days of glass dosimeter processed preheat and non preheat when measuring accumulation dose of radiation by using glass dosimeter over the long haul. For obtaining low dose with 0.1 mGy, 1 mGy and 5 mGy, we employed diagnostic generator AccuRay-650R. We compared the build up characteristic over the long haul by exposuring radiation to 30 glass dosimeters sorted into 10 glass dosimeters per tube voltage and current. In Non preheat glass dosimeter, initial measured dose was inferior to exposed dose but as time goes on, was close to exposed dose steadily. In 72 hour after experiment end, non preheat glass dosimeters were not indicated the difference from preheat glass dosimeters and statistical analysis were meaningful (p>0.05). Initial measured dose for low glass dosimeter processed preheat was close to exposed dose and stable. After 15 days dose was gradually increased. Previous study characteristics of glass dosimeter were with respect to characteristic of glass dosimeter in high dose of high energy area. However, in this study, we make a judgment to measure the dose of glass dosimeter without preheat processing when measuring the accumulation dose of low dose in conclusion.

Evaluation of the Usefulness of Digital Tomosynthesis in the Chest (흉부영역에서 디지털 토모신테시스의 유용성 평가)

  • Jang, Dong-Hyuk;Shim, Sung-Shine;Choi, Jae-Wook;Choi, Jun-Gu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.340-348
    • /
    • 2012
  • To evaluate the usefulness of tomosynthesis in the chest area, simple radiograph, low-dose CT, and tomosynthesis examinations were performed, and their absorbed doses were compared, and finally the images were evaluated. The absorbed dose recorded with the simple Radiograph examination was $0.33{\pm}0.27$ mGy, that of low-dose CT $1.26{\pm}0.56$ mGy, and that of tomosynthesis $0.55{\pm}0.02$ mGy, which indicate significance differences in absorbed doses among the examinations(p<0.001). Based on the evaluations of the images, The simple radiograph scores were $1.66{\pm}0.72$, $1.61{\pm}0.63$, and $1.57{\pm}0.73$, respectively; low-dose CT scores were $2.92{\pm}0.26$, $2.91{\pm}0.29$, and $2.88{\pm}0.32$, respectively; and tomosynthesis scores were $2.69{\pm}0.51$, $2.76{\pm}0.43$, and $2.66{\pm}0.61$, respectively. That is, there were statistically significant differences among the examinations(p<0.001), although there was no significant difference between low-dose CT and tomosynthesis examinations. Therefore, tomosynthesis is judged to be a useful examination that can minimize radiation doses to patients during chest examinations and enhance diagnostic efficacy.

3-Dimensional Dosimetry of Small Field Photon Beam (광자선의 소조사면에서의 3차원적 선량 측정)

  • Jang, Ji-Sun;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • A polymer gel dosimeter was fabricated. A 3-dimensional dosimetry experiment was performed in the small field of the photon of the cyberknife. The dosimeter was installed in a head and neck phantom. It was manufactured from the acrylic and it was used in dosimetry. By using the head and neck CT protocol of the CyberKnife system, CT images of the head and neck phantom were obtained and delivered to the treatment planning system. The irradiation to the dosimeter in the treatment planning was performed, and then, the image was obtained by using 3.0T magnetic resonance imaging (MRI) after 24 hours. The dose distribution of the phantom was analyzed by using MATLAB. The results of this measurement were compared to the results of calculation in the treatment planning. In the isodose curve on the axial direction, the dose distribution coincided with the high dose area, 0.76mm difference on 80%, rather than the low dose area, 1.29 mm difference on 40%. In this research, the fact that the polymer gel dosimeter and MRI can be applied for analyzing a small field in a 3 dimensional dosimetry was confirmed. Moreover, the feasibility of using these for the therapeutic radiation quality control was also confirmed.

Usability Evaluation of Applied Low-dose CT When Examining Urinary Calculus Using Computed Tomography (컴퓨터 단층촬영을 이용한 요로결석 검사에서 저선량 CT의 적용에 대한 유용성 평가)

  • Kim, Hyeon-Jin;Ji, Tae-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.81-85
    • /
    • 2017
  • The aim of this study was to evaluate the usability of applied Low dose Computed Tomography(LDCT) protocol in examining urinary calculus using computed tomography. The subjects of this study were urological patients who visited a medical institution located in Busan from June to December 2016 and the protocol used in this study was Adaptive Statistical Iterative Reconstruction: low-dose CT with 50% Adaptive Statistical Iterative Reconstruction (ASIR). As results of quantitative analysis, the mean pixel value and standard deviation within kidney region of image(ROI)of the axial image were $26.21{\pm}7.08$ in abdomen CT pre scan and $20.03{\pm}8.16$ in low-dose CT. Also the mean pixel value and standard deviation within kidney ROI of the coronal image were $22.07{\pm}7.35$ in abdomen CT pre scan and $21.67{\pm}6.11$ in low dose CT. The results of qualitative analysis showed that four raters' mean values of observed kidney artifacts were $19.14{\pm}0.36$ when using abdomen CT protocol and $19.17{\pm}0.43$ in low-dose CT, and the mean value of resolution and contrast was $19.35{\pm}0.70$ when using abdomen CT protocol and $19.29{\pm}0.58$ in low-dose CT. Also the results of a exposure dose analysis showed that the mean values of CTDIvol and DLP in abdomen CT pre scan were 18.02 mGy and $887.51mGy{\cdot}cm$ respectively and the mean values of CTDIvol and DLP when using low-dose CT protocol were 7.412 mGy and $361.22mGy{\cdot}cm$ respectively. The resulting dose reduction rate was 58.82% and 59.29%, respectively.

A Comprehensive Dosimetric Analysis of Inverse Planned Intensity Modulated Radiation Therapy and Multistatic Fields Technique for Left Breast Radiotherapy (좌측 유방 방사선치료를 위한 역치료계획의 세기변조방사선치료와 다중빔조사영역치료기법 사이의 포괄적 선량측정 분석)

  • Moon, Sung-Kwon;Youn, Seon-Min
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Purpose: This aim of this study is to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and MSF in the radiotherapy of the left breast. Materials and Methods: We performed a comparative analysis of two radiotherapy modalities that can achieve improved dose homogeneity. First is the multistatic fields technique that simultaneously uses both major and minor irradiation fields. The other is IMRT, which employs 3 or 5 beams using a fixed multileaf collimator. We designed treatment plans for 16 early left breast cancer patients who had taken breast conservation surgery and radiotherapy, and analyzed them from a dosimetric standpoint. Results: For the mean values of $V_{95}$ and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving over 110% of the prescribed dose were not found in any of the three methods. A Tukey test performed on IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and heart than multistatic fields technique (MSF) in the low-dose area, but in the high-dose area, MSF showed a slight increase. Conclusion: In order to improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered an optimal alternative to IMRT for radiotherapy of early left breast cancer.

Acridine Orange Stained Micronucleus Assay in Human B and T-lymphocytes after Low Dose ${\gamma}-irradiation$ (아크리딘 오렌지 형광염색법을 이용한 저선량 감마선 유도 말초혈액 B와 T-림프구 미소핵 분석)

  • Choi, Jeong-Mi;Kim, Hee-Sun;Yang, Kwang-Hee;Kim, Cha-Soon;Lim, Yong-Khi;Kim, Chong-Soon;Woon, Jae-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • Firstly, we compared the two staining techniques, Giemsa and Acridine orange, to determine micronuclei on samples of cultures of five healthy human peripheral blood lymphocytes after ${\gamma}-irradiation\;(^{137}Cs)$ in dose ranges of 0 to 800cGy. It was found that the Acridine orange staining method gives more reliable results than the usual Giemsa staining method in micronucleus tests. Moreover, the frequency of micronuclei in cytokinesis-blocked human B-lymphocytes was studied after in vitro irradiation in dose ranges of 0 to 50cGy. After setting and separating the B-lymphocytes, the frequency of radiation-induced micronuclei were observed as the end-point markers for the low-dose radiation dosimetry after staining with Giemsa and Acridine orange dyes. The micronuclei frequency in B-lymphocytes was significantly elevated from 10 to 30cGy ${\gamma}-irradiation$. The determination of micronuclei in B-lymphocytes after staining with Acridine orange was higher than that of Giemsa. The frequency of micronuclei in B-lymphocytes was observed to be at least two times higher than those of T-lymphocytes Giemsa in dose increasing. Therefore, the determination of low-dose radiation-induced micronuclei in B-lymphocytes after staining with Acridine orange is likely to have the greatest potential in the estimation of low dose radiation exposure.

Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm (선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석)

  • Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.

  • PDF