Browse > Article
http://dx.doi.org/10.7742/jksr.2022.16.5.519

The Study of Energy Compensation Filter Thickness for Each Energy Area of Low Energy X-ray Beam Optimization on Active Electronic Personal Dosimeter  

Kim, Jung-Su (Department of Radiologic technology, Daegu Health College)
Park, Youn-Hyun (Sans Frontier Technology Ltd.)
Chae, Hyun-Sic (Sans Frontier Technology Ltd.)
Publication Information
Journal of the Korean Society of Radiology / v.16, no.5, 2022 , pp. 519-526 More about this Journal
Abstract
Electronic personal dosimeter (EPD) provide real time monitoring and a direct indication of the accumulated dose or dose rate in terms of personal dose. Most EPD do not perform well in low energy photon radiation fields present in medical radiation environments. It has poor responsibility and large error rate for low energy photon radiation of medical radiation environments. This study evaluated to optimal additional filtration for EPD using silicon PIN photodiode detector form 40 to 120 kVp range in medical radiation environments. From 40 to 80 kVp energy range, Al 0.2 mm and Sn 1.0 mm overlapped filtration showed good responsibility to dose rate and from 80 kVp to 120 kVp energy range, Al 0.2 mm and Sn 1.6 mm overlapped filtration showed good responsibility to dose rate.
Keywords
Electronic personal dosimeter; Energy responsibility; Filtration; Low energy X-ray; Silicon photodiode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Andreani, M. Bontempi, P. L. Rossi, L. P. Rignanese, M. Zuffa, G. Baldazzi, "Comparison between a silicon PIN diode and a CsI(Tl) coupled to a silicon PIN diode for dosimetric purpose in radiology", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 762, pp. 11-15, 2014. http://dx.doi.org/10.1016/j.nima.2014.05.072   DOI
2 Thermo Scientific EPD TruDose Electronic Dosimeter Radiological performance information sheet. [cited 2022 Sept. 03] Available from: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FCAD%2FDatasheets%2Fepd-trudose-specifications.pdf
3 U. K. Yi, K. R. Baek, S. G. Kwon, "Implementation of electronic personal dosimeter using silicon PIN photodiode", Journal of Institute of Control, Robotics and Systems, Vol. 9, No. 4, pp. 296-303, 2003. http://dx.doi.org/10.5302/J.ICROS.2003.9.4.296   DOI
4 B. J. Lee, W. Lee, G. Cho, S. Y. Chang, S. R Rho. "Solid-state personal dosimeter using dose conversion algorithm" Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 505, No. 1-2, pp. 403-406, 2003.
5 B. J. Lee, B. H. Kim, S. Y. Chang, J. S. Kim, "Development of Prototype Electronic Dosimeter using the Silicon PIN Diode Detector", Journal of Radiation Protection and Research, Vol. 25, No. 4, pp. 197-205, 2000.
6 B. J. Lee, W. N. Lee, B. O. Khang, S. Y. Chang, S. R. Rho, H. S. Chae, "A study on development of a PIN semiconductor detector for measuring individual dose", Journal of Radiation Protection and Research, Vol. 28, No. 2, pp. 87-95, 2003.
7 S. M. Kwon, J. K. Park, B. S. Kim, "The comparison of angular dependence for optical stimulated luminescence dosimeter(OSLD) and electronic personal dosimeter(EPD) used in Diagnostic Radiology", Journal of Digital Contents Society, Vol. 16, No. 3, pp. 463-470, 2015. http://dx.doi.org/10.9728/dcs.2015.16.3.463   DOI
8 C. Texier, C. Itie, H. Serviere, V. Gressier, t. Bolognese-Milsztajn, "Study of the Photon Radiation Performance of Electronic Personal Dosemeters", Radiation Protection Dosimetry, Vol. 96, No. 1-3, pp. 245-249, 2001. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006593   DOI
9 N. Krzanovic, M. Zivanovic, O. Ciraj-Bjelac, Ð. Lazarevic, S. Ceklic, S. Stankovic, "Performance testing of selected types of electronic personal dosimeters in X-and gamma radiation fields", Health Physics: the radiation safety journal, Vol. 113, No. 4, pp. 252-261, 2017. http://dx.doi.org/10.1097/HP.0000000000000704   DOI
10 KOLAS certificated calcitration laboratory, KOREA LABORATORY ACCREDITATION SCHEME web site. [cited 2022 May. 19]. Available from: https://www.knab.go.kr/usr/inf/srh/InfoCrrcInsttSearchList.do
11 J. S. Kim, J. M. Kim, Y. H. Lee, D. N. Seo,I. S. Choi, S. R. Nam, Y. S. Yoon, H. J. Kim, H. L. Min, J. Her, S. G. Han, "National Data Analysis of General Radiography Projection Method in Medical Imaging", Journal of radiological science and technology, Vol. 37, No. 3, pp. 169-175, 2014
12 Hamamatsu web page. [cited 2022 Sept. 06] Available from: https://www.hamamatsu.com/us/en/product/optical-sensors/photodiodes/si-photodiodes/S8559.html
13 C. Romei, A. Di Fulvio, C. A. Traino, R. Ciolini, D. d'Errico, "Characterization of a low-cost PIN photodiode for dosimetry in diagnostic radiology", Physica Medica, Vol. 31, No. 1, pp. 112-116, 2015. http://dx.doi.org/10.1016/j.ejmp.2014.11.001   DOI
14 Toshiba Rotating Anode X-ray Tube Assembly Product Information. [cited 2022 Mar. 20] Available from: http://www.skphotoray.co.kr/datasheet/XRAYTUBE_E7239X.pdf
15 Korean Raw of Medical diagnostic equipment radiation safety. [cited 2022 Apr. 26] Available from: https://law.go.kr/%EB%B2%95%EB%A0%B9/%EC%A7%84%EB%8B%A8%EC%9A%A9%%EB%B0%A9%EC%82%AC%EC%84%A0%%EB%B0%9C%EC%83%9D%EC%9E%A5%EC%B9%98%EC%9D%98%%EC%95%88%EC%A0%84%EA%B4%80%EB%A6%AC%EC%97%90%%EA%B4%80%ED%95%9C%%EA%B7%9C%EC%B9%99
16 M. Jung, C. Teissier, P. Siffert, "Dose response simulations of a high sensitivity electronic silicon dosemeter", Radiation Protection Dosimetr, Vol. 51, No. 3, pp. 157-167, 1994. http://dx.doi.org/10.1093/OXFORDJOURNALS.RPD.A082132   DOI