• Title/Summary/Keyword: 저항 요소

Search Result 933, Processing Time 0.028 seconds

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

Cracking and Durability Characteristics of High-early-strength Pavement Concrete for Large Areas using Calcium Nitrate (질산칼슘 혼화재를 사용한 대단면 급속 포장 콘크리트의 균열 및 내구특성)

  • Won, Jong Pil;Lee, Si Won;Lee, Sang Woo;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.101-108
    • /
    • 2009
  • The performance of high-early strength pavement concrete for large areas is influenced by the physical and chemical environment during service life. Generally, penetration, diffusion, and absorption of harmful materials that exist outside the concrete cause damage to its structure. Thus, we have to use a mixture for durability to keep the required quality for the planned service life. Moreover, in using high-early-strength cement and accelerators, a high heat of hydration to create the initial strength can cause cracks. Based on evaluations from optimal mix proportions of high-early-strength pavement concrete for large areas, we conducted water permeability, abrasion resistance, freeze-thaw, plastic, drying, and autogenous shrinkage tests. Test result showed that a mix of accelerator and PVA fibers showed excellent performance.

The Effect of Shear Resistance in Rigid Soil-nailed Slope System (강성 쏘일네일 보강 사면의 전단저항 효과)

  • Kwon, Young-Ki;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.295-301
    • /
    • 2009
  • In general the stability of soil nail-slope system, the shear resistance is neglected because the tensile resistance of nail acts mainly for slope stabilization. This is because that deformed steel is generally used for nail and it does ductile behavior. In other side when the steel pipe with high rigidity is used for nail, the shear resistance at failure surface work more than deformed steel. In order to analyze effects of shear resistance at the soil nail-slope system with high steel piped nail, a series of numerical analyses were performed. Also numerical analyses at 3 conditions - 5 nailed, 7 nailed, 9 nailed at the same slope were perfomed for investigating the trend of shear resistance effect. From these 3D numerical analyses, it was found that the maximum shear resistances at each nails were larger in case of steel piped nail and because of this, the factor of safety at the condition of the steel piped nail appears larger than that of deformed steel nail.

Experimental Study on the Development of Electromagnetic Pulse Shielding Inorganic Paint Using Carbon Materials (탄소 재료를 사용한 전자파 차폐 무기계 도료 개발에 관한 실험적 연구)

  • Kyong-Pil Jang;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.234-243
    • /
    • 2023
  • The electromagnetic pulse(EMP) is a general term for high-output electromagnetic waves, and is classified into EMP generated from nuclear weapons, non-nuclear EMP, and EMP generated by natural phenomena. Electromagnetic pulses are means that can cause fatal damage to all electronic devices with electromagnetic elements, such as communication devices, mobile phones, computers, TVs, and means of transportation. In this study, the electromagnetic pulse(EMP) shielding effectiveness evaluation of paints according to the type and amount of carbon material was conducted to develop EMP shielding inorganic paint using carbon materials. In order to analyze the improvement of compatibility and dispersibility between materials, experiments were conducted two times with about 27 types of mixture proportions, and the electromagnetic pulse shielding effectiveness was evaluated by the electrical resistance measurement method. As a result of applying the EMP shielding paint developed through this study to shielding concrete, it was confirmed that the shielding performance was improved from about 25 dB to a maximum of 40 dB.

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance (방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구)

  • Ki Hyun Kim;Min Kyu Kim;Min Je Kim;Myung Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2023
  • Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62 × 51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization (막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막)

  • Min-Kyu Shin;Hyeon-Bee Song;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.257-268
    • /
    • 2023
  • Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

Characteristic Analysis of Superelastic Shape Memory Alloy Long-Lasting Damper with Pretension (긴장력이 적용된 초탄성 형상기억합금 장수명 댐퍼의 특성 분석)

  • Lee, Heon-Woo;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • A seismic structure is an earthquake-resistant design that dissipates seismic energy by equipping the structure with a device called a damper. As research efforts to reduce earthquake damage continue to rise, technology for isolating vibrations in structures has evolved by altering the materials and shapes of dampers. However, due to the inherent nature of the damper, there are an unescapable restrictions on the extent of plastic deformation that occurs in the material to effectively dissipate energy. Therefore, in this study, we proposed a long-life damper that offers semi-permanently usage and enhances structural performance by applying additional tension which is achieved by utilizing super elastic shape memory alloy (SSMA), a material that self-recovers after deformation. To comprehensively understand the behavior of long-life dampers, finite element analysis was performed considering the design variables such as material, wire diameter, and presence of tension, and response behavior was derived to analyze characteristics such as load resistance, energy dissipation, and residual displacement to determine the performance of long-life dampers in seismic structure. Excellence has been proven from finite element analysis results.

Evaluation of Moment Transfer Efficiency of a Beam Web at RHS Column-to-Beam Connections (RHS기둥-보 접합부의 모멘트전달효율 평가)

  • Kim, Young-Ju;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.67-76
    • /
    • 2006
  • In this paper the moment transfer efficiency of a web and the strain concentration at the RHS (Rectangular Hollow Section) column-to-steel beam connections was evaluated. Initially, non-linear finite element analysis of five bare steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed that the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide Flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of the steel beam-to-column connections. Analytical results were compared with the previous experimental results. The analytical and the previous experimental results showed that the strain concentration was inversely proportional to the moment transfer efficiency of a beam web and the deformation capacity of connection was poor as their moment transfer efficiency degrades. Further finite element analyses of composite beam with a floor slab revealed that the neutral axis moved toward the top flange and the moment transfer efficiency of a beam web decreased, which led to premature failure of the connection.

Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System (요요 진동시스템을 이용한 가동물체형 파력 발전 시스템의 기계-전기 통합해석 모델링 및 성능 해석)

  • Sim, Kyuho;Park, Jisu;Jang, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.