• 제목/요약/키워드: 저항 시험

Search Result 2,145, Processing Time 0.025 seconds

Analysis Method for Damage Patterns of Low Voltage Switches for PL Judgment (PL 판정을 위한 저압용 스위치의 소손 패턴 해석기법)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2010
  • The purpose of this study is to examine the structure and heat generation mechanism of low voltage switches used to turn on or off the power supply to an indoor lighting system and investigate how the fixtures and movable contacts of the switches are damaged depending on the types of energy sources in order to secure the judgment base for expected PL disputes. Based on the Korean Standard (KS) testing method for incombustibility, this study applied a general flame to the switch. In addition, current was supplied to the switch using the PCITS (Primary Current Injection Test System). The ambient temperature and humidity were maintained at $22{\pm}2^{\circ}C$ and 40~60% respectively while performing the test. It is thought that the switch generated heat due to a defective connection of the wire and clip, insulation deterioration and defective contact of the movable contact, etc. The surface of the switch damaged by the general flame was uniformly carbonized. When the flame source was removed, the fire on the switch was extinguished naturally. From the result obtained by disassembling the switch carbonized by the general flame, it could be seen that fixtures and movable contacts remained in comparatively good shape but the enclosure, clip support, movable contact, indicating lamp, etc. showed carbonization and discoloration. In the case of the switch damaged by overcurrent, the clip connecting the wires, clip support, etc. showed almost no trace of damage, but the fixtures, movable contact, indicating lamp, etc. were severely carbonized. That is, the sections with high contact resistance were intensively damaged and showed a damage pattern indicating that carbonization progressed from the inside to the outside. Therefore, it is possible to judge the initial energy source by analyzing the characteristics of the carbonization pattern and the metal fixtures of damaged switches.

Effect of Post-annealing on the Interfacial adhesion Energy of Cu thin Film and ALD Ru Diffusion Barrier Layer (후속 열처리에 따른 Cu 박막과 ALD Ru 확산방지층의 계면접착에너지 평가)

  • Jeong, Minsu;Lee, Hyeonchul;Bae, Byung-Hyun;Son, Kirak;Kim, Gahui;Lee, Seung-Joon;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • The effects of Ru deposition temperature and post-annealing conditions on the interfacial adhesion energies of atomic layer deposited (ALD) Ru diffusion barrier layer and Cu thin films for the advanced Cu interconnects applications were systematically investigated. The initial interfacial adhesion energies were 8.55, 9.37, $8.96J/m^2$ for the sample deposited at 225, 270, and $310^{\circ}C$, respectively, which are closely related to the similar microstructures and resistivities of Ru films for ALD Ru deposition temperature variations. And the interfacial adhesion energies showed the relatively stable high values over $7.59J/m^2$ until 250h during post-annealing at $200^{\circ}C$, while dramatically decreased to $1.40J/m^2$ after 500 h. The X-ray photoelectron spectroscopy Cu 2p peak separation analysis showed that there exists good correlation between the interfacial adhesion energy and the interfacial CuO formation. Therefore, ALD Ru seems to be a promising diffusion barrier candidate with reliable interfacial reliability for advanced Cu interconnects.

Effect on Insecticide Susceptibility of Lissorhoptrus oryzophilus Fed on Carotenoid-Biofortified Rice Variety (비타민 A 강화벼 급이가 벼물바구미(Lissorhoptrus oryzophilus)의 살충제 감수성에 미치는 영향)

  • Oh, Sung-Dug;Lee, Ki-Jong;Park, Soo-Yun;Ryu, Tae-Hun;Kim, Jae-Kwang;Sohn, Soo-In;Kim, Jin-Seo;Ha, Sun-Hwa;Park, Jong-Sug;Ahn, Byung-Ohg;Cho, Hyun-Suk;Suh, Sang-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.286-292
    • /
    • 2012
  • BACKGROUND: The carotenoid-biofortified (PAC) rice was generated by inserting phytoene synthase (Psy) and carotene desaturase (Crtl) genes isolated from Capsicum annuum cv. Nockwang and Pantoea ananatis into the genome of a conventional variety of rice (Nakdongbyeo). In our present study, we studied the effects on insecticide susceptibility of Rice Water Weevil (Lissorhoptrus oryzophilus). METHODS AND RESULTS: The L. oryzophilus were fed on carotenoid-biofortified (PAC) rice and its near non-genetically modified (GM) counterparts (Nakdongbyeo) under $25{\pm}1^{\circ}C$, humidity of $60{\pm}5%$, and photoperiod 16L:8D for more than 60 days. Ten adults were soaked in the Clothianidin SC solution for 5 second in different concentrations, and were detected the mortalities after 24, 48 and 72 hours respectively. Every experiment was conducted with three replications. The cumulative mortalities of L. oryzophilus exposed to Clothianidin SC were similar between two types of feed administration. CONCLUSION: The results of this study suggested that carotenoid-biofortified rice might not affect the insecticide susceptibilities of Lissorhoptrus oryzophilus.

Analysis of Soil Characteristics and its Relationship According to the Geological Condition in Natural Slopes of the Landslide Area (산사태지역 자연사면의 지질별 토질특성 및 상관관계 분석)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.205-215
    • /
    • 2007
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas. Also, the relationship with landslides and interrelation with each soil properties are analyzed. The landslides in three areas with different geological condition are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. However soil characteristics have a little differentiation to geological condition, the soils sampled from landslide area have higher proportion of fine particle and porosity, and lower density than those from non landslide area. In case of same geological condition, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. The soil layer with high internal friction angle is more stable than that with low internal friction angle in all geological condition. The permeability is mainly influenced by effective particle size, coefficient of uniformity, coefficient of gradation, porosity, density and so on. Also, those have interrelation with each factor. These interrelations are similar in all study area. Meanwhile, in proportion as the void ratio and the porosity rises the permeability increases.

Regional and Annual Fluctuation of Races of Pyricularia oryzae During 1978-1985 in Korea (한국의 벼 도열병균 레이스의 지역 및 연차적(1978-1985) 변동)

  • Ryu J. D.;Yeh W. H.;Han S. S.;Lee Y. H.;Lee E. J.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.174-179
    • /
    • 1987
  • Four thousand eight hundred and eighty five isolates of Pyricularia oryzae were obtained from the diseased rice specimens collected from various areas of Korea for race identification during 1978 - 1985. A total of 15 races inculding 6 races pathogenic to Tongil lines, 2 T-races, 5 C-races and 2 N-races was identified using a old Japanese differential set during 1978-1980. Since 1981, number of races identified by a Korean differential set was 18 races which were composed of 11 KI-races pathogenic to either Tongil lines or Japonica cultivars and 8 KJ-races pathogenic to only Japonica cultivars. The prevalent race was $N-2^{+t}$ during 1978-1979 and race KJ-301 since 1980, respectively. Races KI-315a and KI-315b pathogenic to most of Tongil lines were identified in 1983. being widely distributed to date. Races KJ-105 and KJ-201 pathogenic to the cultivars possessing resistance genes Pi-k and Pi-i were prevalent in Gangweon province, whereas race KI-315b was prevalent in Chungbug and Jeonnam districts.

  • PDF

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

Evaluation and Test Method Characterization for Mechanical and Electrical Properties in BGA Package (BGA 패키지의 기계적${\cdot}$전기적 특성 평가 및 평가법)

  • Koo Ja-Myeong;Kim Jong-Woong;Kim Dae-Gon;Yoon Jeong-Won;Lee Chang-Yong;Jung Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.289-299
    • /
    • 2005
  • The ball shear force was investigated in terms of test parameters, i.e. displacement rate and probe height, with an experimental and non-linear finite element analysis for evaluation of the solder joint integrity in area array packages. The increase in the displacement rate and the decrease in the probe height led to the increase in the shear force. Excessive probe height could cause some detrimental effects on the test results such as unexpected high standard deviation and probe sliding from the solder ball surface. The low shear height conditions were favorable for assessing the mechanical integrity of the solder joints. The mechanical and electrical properties of the Sn-37Pb/Cu and Sn-3.5Ag/Cu BGA solder joints were also investigated with the number of reflows. The total thickness of the intermetallic compound (IMC) layers, consisting of Cu6Sn5 and Cu3Sn, was increased as a function of cubic root of reflow time. The shear force was increased up to 3 or 4 reflows, and then was decreased with the number of reflows. The fracture occurred along the bulk solder, in irrespective of the number of reflows. The electrical resistivity was increased with increasing the number of reflows.

  • PDF

Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP (플라즈마 유기막과 OSP PCB 표면처리의 Sn-Ag-Cu 솔더 접합 특성 비교)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Bang, Jung-Hwan;Park, Nam-Sun;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.25-29
    • /
    • 2014
  • Plasma organic thin film for PCB surface finish is a potential replacement of the conventional PCB finishes because of environment-friendly process, high corrosion-resistance and long shelf life over 1 year. In this study, solder joint properties of the plasma organic surface finish were estimated and compared with OSP surface finish. The plasma surface finish was deposited by chemical vapor deposition from fluorine-based precursors. The thickness of the plasma organic coating was 20 nm. Sn-3.0Ag-0.5Cu (SAC305) solder was used as solder joint materials. From a salt spray test, the plasma organic coating had higher corrosion resistance than the OSP surface finish. The spreadability of SAC305 on plasma organic coating was higher than that on OSP surface finish. SEM and TEM micrographs showed that the interfacial microstructure of the plasma surface finish sample were similar to that of the OSP sample. Solder joint strength of the plasma finish sample was also similar to that of the OSP finished sample.

A Study on Chloride Threshold Level of Polymer Inhibitive Coating Containing Calcium Hydroxide (수산화칼슘을 혼입한 폴리머 방청 코팅의 부식 임계치 향상에 대한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.713-719
    • /
    • 2008
  • Various types of coatings have been developed for use as reinforcement in concrete and to resist chloride environment. The most commonly used coatings are inhibited and sealed cement slurry coating, cement polymer compositing coating and epoxy coating. Cement slurry offers passive protection, epoxy coating offers barrier protection whereas polymer coating offers both passive protection and barrier protection. Moreover, damage during handling of the steel may result in disbondment of the epoxy coating, which would increase the risk of localized corrosion. In the present study, inhibiting technique was used to increase the calcium hydroxide content at the interface up to 20%. Calcium hydroxide provides a high buffering capacity that resists a local fall in pH and thus maintains the alkaline environment necessary to prevent chloride corrosion. This study examines the use of a calcium hydroxide coating on the steel surface to enhance the pH buffering capacity of steel-concrete interface. Finally, the chloride threshold level (CTL) of polymer inhibitive coating calcium hydroxide is evaluated.

Evaluation of Half Cell Potential Measurement in Cracked Concrete Exposed to Salt Spraying Test (염해에 노출된 균열부 콘크리트의 반전위 평가)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.621-630
    • /
    • 2013
  • Several techniques for steel corrosion detection are proposed and HCP (half cell potential) technique is widely adopted for field investigation. If concrete has cracks on surface, steel corrosion is rapidly accelerated due to additional intrusion of chloride and carbon dioxide ions. This study is for an evaluation of HCP in cracked concrete exposed chloride attack. For this work, RC (reinforced concrete) beams are prepared considering 3 w/c ratios (0.35, 0.55, and 0.70) and several cover depths (10~60 mm) and various crack widths of 0.0~1.0 mm are induced. For 35 days, SST (salt spraying test) is performed for corrosion acceleration, and HCP and corrosion length of rebar are evaluated. With increasing crack width, w/c ratios, and decreasing cover depth, HCP measurements increase. HCP evaluation technique is proposed considering the effects of w/c ratios, crack width, and cover depth. Furthermore anti-corrosive cover depths are obtained through Life365 program and the results are compared with those from this study. The results shows relatively big difference in cracked concrete, however provide similar anti-corrosive conditions in sound concrete.