• Title/Summary/Keyword: 저항저감

Search Result 369, Processing Time 0.033 seconds

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Yoon, Ki-Hyun;Jung, Kang-Sik;Kim, Gang-Ki;Paik, Min-Su;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.413-416
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Artificial Accelerated Weathering of Volcanic Rocks from Ulleungdo Island (인공풍화가속실험을 통한 울릉도에 분포하는 화산암의 풍화특성 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.499-510
    • /
    • 2015
  • Artificial accelerated weathering test evaluated rocks from near the circuit road of Ulleungdo island, approximately 120 km from east of the Korean Peninsula. The tests subjected rock specimens to conditions based on the climate of the island. The specimens (such as basaltic breccia, trachyte, volcanic breccia) were preliminarily classified using a TAS diagram (XRF data) and based on the constituent minerals (XRD data); they were further classified by weathering degree according to their absorption ratios. During the artificial accelerated weathering, the absorption ratio of most of the specimens increased, but the point-load strength did not decrease in most cases, except for the volcanic breccia. The greater initial absorption ratio of trachyte rock specimen in comparison with the other specimens led to a greater increase of its absorption ratio during the artificial accelerated weathering test. The volcanic breccia specimens showed the greatest increase of absorption ratio and the biggest reduction ratio of the point- load strength during the tests. These results could aid prediction of the weathering rate of rocks in Ulleungdo island subjected to weathering processes; trachyte which appears to accelerate with time, and volcanic breccia whose mechanical strength can largely decrease in a relative short period of time. Proper measures therefore appear necessary for the prevention of natural disaster such as rock fall and landslide around the circuit road.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Thickness Effect of SiOx Layer Inserted between Anti-Reflection Coating and p-n Junction on Potential-Induced Degradation (PID) of PERC Solar Cells (PERC 태양전지에서 반사방지막과 p-n 접합 사이에 삽입된 SiOx 층의 두께가 Potential-Induced Degradation (PID) 저감에 미치는 영향)

  • Jung, Dongwook;Oh, Kyoung-suk;Jang, Eunjin;Chan, Sung-il;Ryu, Sangwoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.75-80
    • /
    • 2019
  • Silicon solar cells have been widely used as a most promising renewable energy source due to eco-friendliness and high efficiency. As modules of silicon solar cells are connected in series for a practical electricity generation, a large voltage of 500-1,500 V is applied to the modules inevitably. Potential-induced degradation (PID), a deterioration of the efficiency and maximum power output by the continuously applied high voltage between the module frames and solar cells, has been regarded as the major cause that reduces the lifetime of silicon solar cells. In particular, the migration of the $Na^+$ ions from the front glass into Si through the anti-reflection coating and the accumulation of $Na^+$ ions at stacking faults inside Si have been reported as the reason of PID. In this research, the thickness effect of $SiO_x$ layer that can block the migration of $Na^+$ ions on the reduction of PID is investigated as it is incorporated between anti-reflection coating and p-n junction in p-type PERC solar cells. From the measurement of shunt resistance, efficiency, and maximum power output after the continuous application of 1,000 V for 96 hours, it is revealed that the thickness of $SiO_x$ layer should be larger than 7-8 nm to reduce PID effectively.

Development of Experimental System for Green Roof System (옥상녹화 효율성 검증실험장비 개발)

  • Park, JaeRock;Kim, SaeBom;Cheon, JongHyeon;Kim, ByungSung;Shin, HyunSuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.495-495
    • /
    • 2017
  • 도시화는 불투수면의 증가를 야기 시켜 물순환 왜곡, 다양한 오염 물질의 유입으로 인한 비점오염물질 유출, 인공 배출열의 증가로 인한 도시열섬효과 등 다양한 문제를 유발한다. 이러한 수리수문학적 및 환경생태학적 문제를 저감하기 위하여 도시지역과 같은 개발 사업에서는 수환경을 가능한 자연 상태로 복원하는 저영향개발(Low Impact Development, LID)기법이 중요한 대안으로 제시되고 있다. LID기법 중 하나인 옥상녹화는 에너지 이용을 최소한으로 한 자연 녹음의 효과적인 이용을 도모하여 환경공생도시 조성과 식물을 매개로한 자연 순환 과정을 도시구조에 도입하여 순환 시스템 재생이 가능 하도록한다. 노지녹화는 두꺼운 자연 토양을 이용하는 반면 옥상녹화는 적재하중의 제약(옥상의 적재하중 조건은 $150{\sim}180kgf/m^2$이다. 비중이 1.6~1.8인 토양을 20cm 객토한 경우, 약 $320kgf/m^2 $이상의 적재하중이 되기에 식재기반의 경량화는 중요한 사안이다.)으로 인해 용적밀도가 작은 인공경량토양 또는 개량토양을 이용하며, 토양 두께도 얇게 설정된다. 또한 토양의 두께는 식물의 크기와 종류 및 토양의 조성에 따라 다르기에 적재하중 조건을 고려한 적절한 토양과 식재 식물의 크기와 종류 결정은 중요하다. 이에 본 연구에서는 옥상녹화식생에 대한 평가와 이에 대한 시험 프로세스가 가능한 실험 장치를 개발하였다. 옥상녹화 효율성 검증실험장비는 1m*1m*0.6m 아크릴 재질의 녹화셀로 경사조절이 가능하도록 설계하여 경사변화에 따른 유출, 침투, 증발산량의 탄성도 모의 평가를 할 수 있다. 또한 4점식 형태의 로드셀을 이용하여 녹화셀에서 발생하는 증발산량을 측정하고 관측된 증발산량은 RS-232c 이상의 통신프로토콜을 사용하여 주기적인 관측치의 송수신이 가능하며 주기적 자료송수신 외에도 옥상 녹화셀의 측면에 하중 표시기를 설치하여 관측이 가능하다. 또한 저면에 바퀴설치를 통하여 이동 실험이 용이하며 현재 부산대학교 양산캠퍼스 한국 GI&LID 실증단지 연구센터 내 옥상녹화 실험장에 옥상녹화 효율성 검증 실험 장비를 설치하여 자연 혹은 인공강우를 통한 유출, 침투, 증발산량의 시험계측을 실시중이다. 이러한 옥상녹화 효율성 검증실험장비는 최대 하중 2,000kg, 측정해상도 0.02kg 이상을 허용하는 로드셀과 녹화셀을 이용하여 하중을 고려한 식생의 종류에 따른 평가가 가능하므로 최적 식재기반 단면구조 개발에 이용될 수 있을 것이다. 또한 토양 함수량 변화 측정으로 옥상녹화에 이용되는 다양한 종류의 식물의 염분에 대한 저항성과 식물의 성장능력을 평가하여 녹화공간에 따른 옥상녹화에 사용할 식생을 결정할 수 있다.

  • PDF

A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine (국내 석회석 광산 수갱 굴착에 의한 통기효과 분석 연구)

  • Lee, Changwoo;Nguyen, Van Duc;Kubuya, Kiro Rocky;Kim, Chang O
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.609-619
    • /
    • 2018
  • This study was carried out at a local limestone mine to analyze the ventilation efficiency of the shaft equipped with a main fan. The results show that its ventilation efficiency is clearly verified for the natural as well as the mechanical ventilation. The airflow rate of $11.7m^3/s$ was induced by the natural ventilation force and the maximum quantity is almost same as the airflow rate estimated by monitoring the average temperatures in the upcast and downcast air columns. Meanwhile, the airflow rate exhausted by the main fan through the shaft was $20.3{\sim}24.8m^3/s$; variation of the quantity was caused by the upward shift of the mine ventilation characteristic curve due to the frequent movement of the equipment. This indicates efforts are required to reduce the ventilation resistance and raise the quantity supplied by the main fan. The turbulent diffusion coefficients along the 1912 m long airway from the portal to the shaft bottom was estimated to be $15m^2/s$ and $18m^2/s$. Since these higher coefficients imply that contaminants will be dispersed at a faster velocity than the airflow, prompt exhaust method should be planned for the effective air quality control. The ventilation shaft and main fan are definitely what local limestone mines inevitably need for better working environment and sustainable development.

Effect of Dispersion Solvent on Properties of Fluorinated Polymer Reinforced Composite Membrane for Fuel Cell by Solution Coating Method (용액 코팅법을 통한 연료전지용 불소계 전해질 강화복합막의 특성에 미치는 분산용매의 영향)

  • Yook, Seung Ho;Yoon, Ki Ro;Choi, Jihun;Lee, Ju Sung;Kim, Jong Min;Lee, Seung Woo;Lee, Kwan-Young;Kim, Jin Young
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.413-419
    • /
    • 2019
  • In the recent, as a world demand of energy resources has been transformed from fossil fuels to hydrogen-based clean energy resources, a huge attention has been attracted to increase the performance and decrease a production cost of core materials in fuel cell technology. The utilization of reinforced composite membranes as electrolytes in the polymer electrolyte membrane fuel cells can reduce the use of high cost perfluorosulfonic acid (PFSA), mitigate the cell impedance, and improve the dimensional stability as well as the interfacial stability, giving rise to achieve both an improved performance and a reduction of production costs of the fuel cell devices. In this study, we investigate the effects of physical characteristics and cell performances according to the various ionomer solvents in the solution based manufacturing process of reinforced composite electrolyte membrane.