• Title/Summary/Keyword: 저층

Search Result 1,000, Processing Time 0.195 seconds

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

Marine Bio-environmental Characteristics with the Distributions of Dinoflagellate Cyst Assemblages in the Ulsan Coastal Waters (UCW) (와편모조 시스트 분포에 의한 울산연안 해역의 생물해양환경 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • This study described the spatial distribution of dinoflagellate cyst assemblages in the Ulsan Coastal Waters (UCW). Surface sediment samples from 15 stations revealed the occurrence of 33 species involving the Groups Protoperidinioid (51.5%), Gonyaulacoid (30.4%), Calciodineloid (9.1%), Gymnodinioid (3.0%), Diplopsallid (3.0%) and Tuberculodinioid (3.0%). The recorded cyst abundance in the UCW recorded was low ($260{\sim}1,680cysts\;g-dry^{-1}$) compared to Korean coastal waters. The abundance of heterotrophic cysts is higher in the Ulsan harbour and northwestern parts of UCW with eutrophic areas, however autotrophic species are more prevalent in the southern parts with open sea environments. The dinoflagellate cyst assemblages in the UCW were characterized by the dominance of Gonyaulax scrippsae, Protoperidinium sp. (Brigantedinium sp.), and Gonyaulax spinifera complex. The advent of the toxic dinoflagellate, Pyrodinium bahamense var. bahamense was recorded for the first time in the East-south sea of Korea. Therefore, as a result of ongoing monitoring and management for new toxic dinoflegallates from tropical or subtropical regions, analysis of dinoflagellate cyst assemblages in the UCW has been deemed necessary.

Long-term Variation and Characteristics of Water Quality in the Garolim Coastal Areas of Yellow Sea, Korea (가로림연안 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Hyung-Chul;Kim, Pyoung-Joong;Park, Gyung-Soo;Ko, Joen-Young;Jeon, Sang-Baek;Lee, Seung-Min;Park, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.315-328
    • /
    • 2009
  • Long-term trends and distribution patterns of water quality were investigated in the Garolim coastal areas of Yellow Sea, Korea from 1998 to 2007. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids(SS), chemical oxygen demand(COD), dissolved oxygen(DO) and nutrients. Spatial distribution patterns were not clear among stations but the seasonal variations were distinct except pH and ammonia. The trend analysis by principal component analysis(PCA) during twenty years revealed the significant variations in water quality in the study area. Annual water qualities were clearly classified into 4 clusters by PCA; year cluster 1997, 1998 and 2000-2002, 1999 and 2003-2006/2008. By this multi-variate analysis the annual trends were summarized as follows; In recent years, salinity increased, whereas dissolved inorganic nitrogen, nitrate nitrogen and COD decreased and water quality generally continued to be in good condition in Gsrolim coastal areas without inflow of freshwater from land. Garolim coastal areas are required to be conserved continuously as important coastal areas for fisheries.

  • PDF

Investigation of Demersal Fisheries Resources of the East China Sea - 2 . Hydroacoustic - Bottom Trawl Survey , November 1989 - (동지나해 저서어류의 자원조사 연구 - 2 . 저서어류자원의 음향학적 조사 ( 1989년 ) -)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 1990
  • A cooperative Korea-Japan investigation for the demersal fisheries resources of the East China Sea was carried out by using the training ship Oshoro Maru belong to Hokkaido University Japan, during 5-12 November, 1989. The research vessel sampled 24 stations with demersal trawls on the East China Sea continental shelf, and 96 nautical miles of track line were surveyed hydroacoustically. The echo sounder used during the survey was of a scientific type having echo integration capabilities and the computer system was programmed to obtain echo integration data for each depth stratum between the transducer and the bottom. The target strength of fish school(TS per 1kg) was estimated from the relationship between mean volume backscattering strength and catches caught by the demersal trawls. The results obtained can be summarized as follows: 1. Approximately 96 species were identified from survey catches. 2. The mean volume backscattering strength for the layer occupied by bottom trawls at 25 and 100 KHz were-63.9 dB and -67.3 dB, respectively. Then the average catch per unit time of each trawl haul was 58.8 kg/hour. 3. The mean volume backscattering strength for the entire layer between the transducer and the bottom at 25 and 100KHz were -61.9 dB and -67.0 dB, respectively. 4. The mean fish school target strength per unit weight(TS/kg) at 25 and 100 KHz were -23.6 dB/kg and -26.6 dB/kg, respectively.

  • PDF

Investigation of Demersal Fisheries Resources of East China Sea - 3 . The Oceanographic Condition of the East China Sea in November , 1989 - (동지나해 저서어류의 자원조사 연구 - 3 . 1989년 11월 동지나해의 해황 -)

  • 김정창
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.151-166
    • /
    • 1990
  • Using the data observed on the Oshoro-maru from November 4 to November 12, 1989 in the East China Sea, the oceanographic conditions were investigated. The results are as follows: The oceanographic condition of surface layer was divided into two regions. One was the Tsushima Current Waters and the other was the China Coastal Waters. The oceanic front was formed between above two waters. Tsushima Current Waters had high temperature ranging 22~24$^{\circ}C$, high salinity ranging 33.5~34.5$\textperthousand$ and low D.O less than 4.5ml/l. And China Coastal Waters had low temperature ranging 18~2$0^{\circ}C$, low salinity less than 23.0$\textperthousand$ and high D.O ranging 4.0~5.0ml/l. In the case of the bottom layer, Tsushima Current Waters and China Coastal Waters appeared the same as the surface layer. In addition, the Yellow Sea Bottom Cold Waters and the Southern Bottom Waters of East China Sea distributed together with two surface waters above. The was temperature ranging 15~19$^{\circ}C$, salinity 34.5$\textperthousand$ and low D.O ranging 2.0~3.5ml/l and that was temperature less than 1$0^{\circ}C$, salinity less than 33.3$\textperthousand$ and high D,O greater than 4.5ml/l. The waters of intermediate characteristics between China Coastal Waters and Tsushima Current Waters seem to be resulted from the mixing occurred between the above tow waters, and it had temperature of 20.5~22.$0^{\circ}C$, salinity of 32.3~33.3$\textperthousand$.

  • PDF

On the Influence of the Oceanographic Condition in the East China Sea and the Yellow Sea on the fluctuation of the Gang-dal-i fishing ground (동지나해 .황해의 해황이 강달이 어장의 변동에 미치는 영향)

  • Yang, Seong-Gi;Jo, Gyu-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.18 no.2
    • /
    • pp.81-89
    • /
    • 1982
  • In order to analyze the formation mechanism for the fishing ground of the Gang-dal-i, the relationship between the fish grounds of the Gang-dal-i and the oceanographic structure of the East China Sea and the Yellow Sea is investigated by using the data of the catches of stow net fishery (Fisheries Research and Development Agency, 1970-1979) and the oceanographic observation data (Japan Meteorological Agency). The main fishing grounds of the Gang-dal-i concentrated in the adjacent seas of Daeheugsan island and Sokotra Rock. In these areas, the fishing conditions are generally stable, because about 70% of the total catch of the Gang-dal-i for the ten years is occupied, CPUE also is relatively great, and the coefficients of variation of the catches are relatively small as 0.9 to 1.4. The main fishing periods are roughly from February to March and June to July, and the years of good catches are from 1974 to 1976. In general, the main fishing grounds are formed in the marginal areas of the Yellow Sea Bottom Cold Water. They are the frontal areas in which the Yellow Sea Bottom Cold Water is intermixed with the Yellow Sea Warm Current. The range of the temperature and the salinity in these regions are from 10 to 13$^{\circ}C$ and 32.5 to 34.4$\textperthousand$, respectively.

  • PDF

Development of Three-Dimensional Cohesive Sediment Transport Model and Diffusion of Suspended Sediment at Suyoung Bay (3차원 점성토(粘性土) 운송(運送) 모델의 개발(開發)과 수영만(水營灣)의 부유물질 확산)

  • Kim, Cha Kyum;Lee, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.179-192
    • /
    • 1993
  • Three-dimensional cohesive sediment transport model, COSETM-3, is develpoed using a finite difference method. The model results are compared with the physical experimental results for the relative concentration with time at the mid-depth of the recirculating flume and are found to be in good agreement. This model is applied to Suyoung Bay in Pusan of Korea to verify the field applicability of the model and to investigate on the SS (suspended solids) diffusion phenomena at the bay. Behaviors of discharging SS from Suyoung River at normal river flow and flood river flow are predicted. The numerical results appear to be reasonable and qualitative agreement with field data. The influence of settling velocity on the concentration distribution of SS is also investigated. In case of not considering settling velocity, SS concentration at surface layer is higher than that at lower layer, but in case of considering settling velocity, SS concentration at lower layer is higher than that at surface layer. The fluctuation of SS concentration at surface layer is large due to the strong mixing, but the fluctuation of the concentration at lower layer is small due to the weak mixing. SS diffusion patterns at flood river flow are similar to those at normal river flow, while the concentration at that flow is so much higher than that at this flow. SS concentration increases with time until the peak discharge occurs, but the concentration decreases with time with decreasing river flow after the peak discharge.

  • PDF

Effect of a Low-oxygen Layer on the Vertical Distribution of Zooplankton in Gamak Bay (가막만 동물플랑크톤의 수층 분포에 미치는 저산소화의 영향)

  • Yong, Moon-Seong;Soh, Ho-Young;Choi, Sang-Duk;Jung, Chang-Soo;Kim, Sook-Yang;Lee, Young-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.240-247
    • /
    • 2006
  • The dynamic of zooplankton community and its relationship with dissolved oxygen were studied at the Soho area of Gamak Bay from 22 August to 15 September in summer. We found that zooplankton were in low abundance or absent from bottom waters when oxygen concentrations were <3 mg $L^{-1}$. The relationship between summer low-oxygen in bottom-layer and zooplankton community structure was discussed at vertical abundance in Soho area of Gamak Bay. To examine effects of bottom-layer low-oxygen on abundance and vertical distributions in the stratified Soho area, zooplankton was surveyed near-surface, within the near-bottom in the study area under a range of near-bottom dissolved oxygen conditions. There were vertical variation in total zooplankton abundance in the study area (ANOVA, P<0.05). Overall abundance of zooplankton: copepod nauplii, Oithona sp. and tintinnids were lower throughout the water column when bottom-layer DO was low (${\leq}3mg\;L^{-1}$). In this context it was postulated that zooplankton distribution in the Soho area of Gamak Bay might be controlled by dissolved oxygen condition.

The Importance of groundwater discharge for environmental assessment of Chinhae Bay (진해만 환경평가를 위한 해저지하수의 중요성)

  • Chung Chong Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Young Il;Moon Duk Soo;Park Jun Kun;Choi Jun Sun;Yang Dong Beom
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.23-36
    • /
    • 2000
  • Bottom sea waters in eight stations including from inner bay to outer bay to understand the importance of the submarine groundwater discharge for the environmental assessment of Chinhae Bay was collected in August 1999 and January 2000. Generally, /sup 222/Rn is very useful tracer to assess the submarine groundwater discharge because it is 2-4 orders of magnitude more concentrated in groundwater compared to surface water. The /sup 222/Rn activities ranged between about 33 to 182 dpm/100kg within the bay. Higher activities more than 100 dpm/100kg were found at the inner bay. The /sup 226/Ra activities, its parent, however, were little different between stations. /sup 222/Rn activities at the same station varied with season. It suggests that the major source of /sup 222/Rn is not from the bottom sediment, but from the change of submarine groundwater discharge by precipitation. The contents of Cl/sup -/ and SO/sub 4//sup 2-/ in the groundwater of Wonjeon-ri were very high as 1,312 and 369 ppm, respectively, indicating that this groundwater along the Chinhae coast was affected by seawater. Therefore, the submarine groundwater in the inner Bay may discharge to the overlying water. It indicates that these submarine groundwater discharges may play an important role as another important source of nutrients in the Chinhae Bay, because groundwater around the Chinhae Bay showed high concentration of dissolved inorganic nutrients (average , nitrate>174 μM, silicate>262 μM). Therefore, further studies are required to assess the contribution by the submarine groundwater discharge in the biogeochemical processes of the Chinhae Bay.

  • PDF

Distribution Pattern of Macrozoobenthos at the Farming Ground in the Western Part of Chinhae Bay, Korea (진해만 양식장 밀집해역의 저서동물 분포)

  • LIM Hyun-Sig;CHOI Jin-Woo;JE Jong-Geel;LEE Jae-Hac
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.115-132
    • /
    • 1992
  • This study was conducted to clarify the distribution pattern of macrobenthic soft-bottom dwelling animals near the shellfish farming ground in Chinhae Bay, Korea Sampling was seasonally performed with van Veen grab$(0.1m^2)$ from October 1990 to July 1991. Benthic animals collected during the study comprised 107 species which amounted to 6,978 individuals: 52 species from polychaetes$(48.6\%)$, 34 species from crustaceans$(31.8\%),$ 14 species from molluscs$(13.1\%)$ and 7 species from other faunal groups$(6.5\%)$. The dominant species were four polychaetes and one amphipod: Lumbrineis longifolia, Capitella capitate, Mediomastus sp., Sigambra tentaculata and Erictonius pugnax. The study area could be divided into 3 regions based on the faunal similarity which was closely related to the content of organic matter in the surface sediment. The benthic community located near the shellfish farming ground showed large spatial and seasonal variations in species diversity and evenness in contrast to the stable values off the farming area. The oxygen deficient water mass below 2 ml/l In thi bottom layer during the summer stressed and depauperated the benthic community in the autumn of 1990. However, the benthic community did recover during the winter. It is postulated that the cyclic phenomenon of summer mortality followed by winter recovery may be a common characteristic in benthic communities subjected to a high level of organic pollution.

  • PDF