Effect of a Low-oxygen Layer on the Vertical Distribution of Zooplankton in Gamak Bay

가막만 동물플랑크톤의 수층 분포에 미치는 저산소화의 영향

  • 문성용 (전남대학교 해양기술학부) ;
  • 서호영 (전남대학교 해양기술학부) ;
  • 최상덕 (전남대학교 해양기술학부) ;
  • 정창수 (국립수산과학원 남해수산연구소) ;
  • 김숙양 (국립수산과학원 남해수산연구소) ;
  • 이영식 (국립수산과학원 남해수산연구소)
  • Published : 2006.09.01

Abstract

The dynamic of zooplankton community and its relationship with dissolved oxygen were studied at the Soho area of Gamak Bay from 22 August to 15 September in summer. We found that zooplankton were in low abundance or absent from bottom waters when oxygen concentrations were <3 mg $L^{-1}$. The relationship between summer low-oxygen in bottom-layer and zooplankton community structure was discussed at vertical abundance in Soho area of Gamak Bay. To examine effects of bottom-layer low-oxygen on abundance and vertical distributions in the stratified Soho area, zooplankton was surveyed near-surface, within the near-bottom in the study area under a range of near-bottom dissolved oxygen conditions. There were vertical variation in total zooplankton abundance in the study area (ANOVA, P<0.05). Overall abundance of zooplankton: copepod nauplii, Oithona sp. and tintinnids were lower throughout the water column when bottom-layer DO was low (${\leq}3mg\;L^{-1}$). In this context it was postulated that zooplankton distribution in the Soho area of Gamak Bay might be controlled by dissolved oxygen condition.

가막만 소호 인근해역의 용존산소 농도에 따른 등물 플랑크톤 군집 동태를 연구하기 위해 2005년 8월 22일 부터 9월 15일까지 연구를 실시하였다. 본 연구결과 저층의 용존산소 농도가 $3mgL^{-1}$ 이하일 때는 동물플랑크톤 출현 개체수는 현저히 낮게 나타나거나 전혀 나타나지 않았다. 수층별 분포와 출현 개체수에 대한 저층의 저산소화 영향을 연구한 결과, 용존산소 농도는 저층으로 갈수록 낮게 나타났으며, 연구해역의 동물플랑크톤 출현 개체수는 대부분 표층에서 많게 나타났다. 연구 해역의 수층별 동물플랑크톤 총 출현 개체수를 분산분석 (ANOVA-test)을 실시한 결과 유의한 차이를 나타냈다 (P<0.05).동물플랑크톤의 전체적인 출현 개체수에서는 요각류 유생, Oithona sp., 그리고 유종섬모충류가 용존산소농도가 $3mgL^{-1}$이하인 수층에서 낮게 나타났다. 결과 적으로, 이러한 환경 조건은 가막만 소호 인근해역의 동물플랑크톤 수층 분포에 영향을 주는 환경요인으로 용존산소 농도에 의해서 조절되고 있음을 확인할 수 있다.

Keywords

References

  1. 과학기술부. 2000. 한국 연안해역에서의 적조발생 예보 및 억제기작 확립에 관한 연구, pp.396
  2. 김광수. 2001. 섬진강 하류의 동물플랑크톤 군집에 관한 생 태학적 연구. 전남대학교 박사학위논문. pp.170
  3. 윤양호. 2000. 가막만 북서부해역 식물플랑크톤 군집의 시.공간적 분포 특성. 여수대학교 수산과학연구소 논문집. 9:34-47
  4. 임병진. 1992. 한강하류계에서 동물플랑크톤 군집의 생태학적 연구. 한양대학교 박사학위논문. pp.192
  5. Bollens SM and BW Frost. 1991. Diel vertical migrations in zooplankton: rapid individual response to predators. J. Plankton Res. 136:1359-1365
  6. Calbet A, S Garrido, E Saiz, M Alcaraz and CM Duarte. 2001. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size factions. J. Plankon Res. 23:319-331 https://doi.org/10.1093/plankt/23.3.319
  7. Diaz RJ and R Rosenberg. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33:245-303
  8. Haury LR, H Yamazaki and DL Fey. 1992. Simultaneous measurements of small-scale physical dynamics and zooplankton distribution. J. Plankton Res. 14:513-530 https://doi.org/10.1093/plankt/14.4.513
  9. Hong JS And HS Lim. 1997. Benthic community recovery after hypoxia stress in Chinhae Bay, Korea. pp.117. In EMBS. Lysekil. Sweden
  10. Howell P and D Simpson. 1994. Abundance of marine resources in relation to dissolved oxygen in Long Island Sound. Esturies 17:394-402 https://doi.org/10.2307/1352672
  11. Keister JE, ED Houde and DL Breitburg. 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar. Ecol. Prog. Ser. 205:43-59 https://doi.org/10.3354/meps205043
  12. KMA (Korea Meteorological Administration). 2005. Annual report of automatic weather station data (Yeosu). http://www.kma.go.kr
  13. Lampitt RS and JC Gamble. 1982. Diet and respiration of the small planktonic marine copepod, Oithona nana. Mar. Biol. 66:185-190 https://doi.org/10.1007/BF00397192
  14. Marcus NH, C Richmond, C Sedlacek, GA Miller and C Oppert. 2004. Impact of hypoxia on the survival, egg production and population dynamics of Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 301:111-128 https://doi.org/10.1016/j.jembe.2003.09.016
  15. Parsons TR, Y Matia and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York
  16. Poulet SA and R Williams. 1991. Characteristics and properties of copepods affecting the fourth international conference on copepoda. Bull. Plankton Soc. Japan. Spec., pp. 271-290
  17. Rabalasis N and RE Turner. 200 I. Hypoxia in the northern Gulf of Mexico: description, causes and change. pp.1-36. In Rabalais N, Turner RE (Eds) Coastal Hypoxia: Consequences for Living Resources and Ecosystems (Rabalais N and RE Tomer, eds.). American Geophysical Union, Washington, DC
  18. Roman MR, AL Gauzens, WK Rhinehart and JR White. 1993. Effects of low oxygen waters on Chesapeake Bay zooplankton Limnol. Ocenogr. 38:1603-1614 https://doi.org/10.4319/lo.1993.38.8.1603
  19. Selberg CD, LA Eby and LB Crowder. 2001. Hypoxia in the Neuse River Estuary: responses in blue crabs and crabbers. North Am. J. Fish. Manage. 21:358-366 https://doi.org/10.1577/1548-8675(2001)021<0358:HITNRE>2.0.CO;2
  20. Stalder LC and NH Marcus. 1997. Zooplankton responses to hypoxia: behavioral patterns and survival of three species of calanoid copepods. Mar. Biol, 127:599-607 https://doi.org/10.1007/s002270050050
  21. UNESCO. 1968. Zooplankton sampling. pp. 174. In Monographis on Oceanographic Methodology 2. UNESCO. Paris
  22. Zarkanellas AJ. 1979. The effects of pollution induced oxygen deficiency on the benthos in Elefsis Bay, Greece. Mar. Environ. Res. 2:191-207 https://doi.org/10.1016/0141-1136(79)90018-7