• Title/Summary/Keyword: 저유동성 몰탈주입

Search Result 8, Processing Time 0.024 seconds

A Study on the Deformation of Ground by the Low Slump Mortar Grouting (저유동성 몰탈주입 적용지반의 거동에 관한 연구)

  • Do, Jongnam;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.5-13
    • /
    • 2010
  • Low slump mortar grouting is widely used in reinforcement of structural foundation and ground improvement in soft ground, and has advantage which construction is possible in insufficient space. However it has been not yet studied sufficiently to estimate the effect of ground improvement in design step and to prove the estimating method. So the method must be developed in order to use the low slump mortar grouting method in various cases. In this study, the field tests were performed in the reclaimed soils to measure the effect of ground improvement. Then it was compared with what was calculated by the existing formula that was formerly suggested. The results show that the value from the formula was similar with the value from the field tests. Also it was proved that the formula was available to estimate the effect of ground improvement in the loose granular soils.

The Study on the Stress Concentration Ratio of Low Slump Mortar Grouting Mixtures for Improving the Soft Ground (연약지반 보강을 위한 저유동성 몰탈 개량체의 응력분담비에 관한 연구)

  • Park, Eonsang;Kim, Byungil;Park, Seungdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.15-24
    • /
    • 2020
  • In this study, the stress concentration ratio for the improved material of the low slump mortar grouting was evaluated through the composite ground method, the ground arching theory, the plastic angle method, the 2D and 3D numerical analysis and the 3D model experiment. The stress concentration ratio calculated by the composite ground method was 89.3, 3.75~59.0 when the three-dimensional ground arching theory was applied, and 82.8 for the three-dimensional plastic angle method. As a result of the 2D numerical analysis, the stress concentration ratio was 63.0~77.0, which was found to increase as the improvement ratio increased. The results of 3D numerical analysis were predicted to be 50.0~56.0 smaller than the results of 2D analysis. In the case of a special model experiment using a large triaxial compression cell, the stress concentration ratio for each load step was 53.0~60.0, and the stress concentration ratio evaluated by the experiment was measured within 2D and 3D numerical analysis predictions. In this study, a predictive equation for the stress concentration ratio according to the improvement ratio is proposed based on the analysis and experimental values for the improved ratio of the low slump mortar grouting.

Settlement Restraint of Soft Ground by Low Slump Mortar Injection (저유동설 몰탈주입에 의한 연약지반의 침하억제 효과)

  • 천병식;여유현;정영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.53-67
    • /
    • 2001
  • In this study the pilot test of CGS as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method and effect of settlement restraint. The site far pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occur continuously because this ground is very soft. Site investigations such as SPT, DCPT and vane shear test were performed to determine the characteristics of ground improvement. Field measurements and FDM analysis were performed on purpose to find out the displacement of ground during injection works. From the results of this study, CGS method can be optimized by the control of diagram, space, depth, injection material, and injection pressure. CGS improved soft ground compositely by the bearing effect of CGS columns and reinforcement of adjacent ground. Considering that increase of N value is about 2.1, CGS can be considered as an effective method to increase the bearing capacity as well as to stop the settlement of soft ground. It is also expected to be economic and effective in improvement of ground when it is used in applicable sites.

  • PDF

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.

A Study on the Reinforcement of Bridge Foundation in the Limestone Cavity (석회암 공동지역의 교량기초 보강에 관한 연구)

  • Lee, Sang-Chul;Ryu, Chang-Yeol;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Irregular distributions of limestone cavity in Gang-Won province area may cause unexpected accidents from reduced serviceability or failure of structure. It is requested that an appropriate ground reinforcement method should be used to improve bearing capacity of structure, and the method should also be satisfied with environmental requirements. Among several methods used for foundation constructions in cavity area, Rod Jet Pile(RJP) method has been widely used. While the RJP method was used to improve bearing capacity for the railway bridge foundations, water pollutions of drinking water as well as fishery located adjacent to this project area were occurred. The main reason of the water pollution was cement runoff used in cement mortar during injecting material in RJP method. Laboratory tests were performed to prevent water pollution. The compaction mortar method using low movable material was selected for this project. The quality of water at a fishery adjacent to the site and the compressive strength of cores taken from the construction site were measured. Test results show that the water pollutions was minimized, and the average compressive strength of foundation material was over 5 MPa. As a result of this study, compaction mortar method can be used to ensure the bearing capacity of foundation and to prevent environment pollutions.

A Study on the Behavior Characteristics of Soft Clay Ground by C.G.S Method (C.G.S공법을 적용한 연약점토지반에서의 거동특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.307-323
    • /
    • 2003
  • In this study the pilot test of C.G.S (Compaction Grouting System) as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method to the soft ground and the effect of settlement restraint. The site for pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occurs continuously because this ground is very soft. Site investigations such as SPT, CPT and vane shear test were performed to determine the characteristics of ground improvement after the installation of C.G.S. Field measurements were performed on purpose to find out the displacement of ground during the installation of C.G.S. From the results of this study, C.G.S method can be optimized by the control of radius, space, depth, injection material and injection pressure. C.G.S improves soft ground with radial consolidation of adjacent soft ground. Considering that increase of N value to about 3, C.G.S can be considered as an effective method to increase the bearing capacity as well as constrain the settlement of soft ground. It is also expected to be economic and effective in the improvement of ground when it is used in applicable sites.

Evaluation of Reinforcement Efficiency and Applicability Using a Reinforcement Method for Liquefiable Ground (액상화 발생 지반에 대한 보강공법 별 보강 효과 및 적용성 분석)

  • Yoo, Mintaek ;Han, Jin-Tae;Park, Youngjun ;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.41-50
    • /
    • 2023
  • This study reviewed the liquefaction reinforcement and ground reinforcement methods widely used domestically and abroad through construction method characteristics and analyzed the economic feasibility and reinforcement efficiency of each reinforcement method. The analysis results were used to evaluate the applicability of the appropriate reinforcement method for the liquefaction reinforcement of new and existing structures. As a result of evaluating the applicability of the reinforcement method based on the economic feasibility and reinforcement effect of each reinforcement method, the compaction method, which secures the construct ability by applying large equipment, is advantageous when reinforcing a new structure, and the low-fluidity mortar injection method (C.G.S method) and the high-pressure injection method (J.S.P method) are considered appropriate in the existing structure.

Case Study of Improvement against Leakage of a Sea Dike under Construction (해안제방 시공 중 해수유입에 대한 차수보강 사례분석)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, the causes and countermeasures for the leakage of a sea dyke under construction are analyzed. In general, the seabed ground is clearly divided from the embankment but a lot of parts show abnormal zones with low resistivity from the results of electric resistivity survey. Hence the causes of the leakage are considered as following: three-dimensional shear strain behavior, irregular compulsory replacement of the soft seabed ground with low strength and quality deterioration of the waterproof sheets during the closing process. The improvement method is determined by considering the constructability in the seawater and its velocity condition, durability, economic feasibility, similar application cases and so on. Consequently, a combination of low slump mortar and slurry grouting and injection method is selected as an optimum combination. Mixing ratio and improvement pattern are determined after drilling investigation and pilot test. The improvement boundary is separated into general and intense leakage area. The construction is performed with each pattern and the improvement effects are confirmed. The confirmed effects with various tests after completion show tolerable ranges for all of the established standards. Finally, various issues such as prediction of length of the waterproof sheet, installation of it against seawater velocity, etc. should be considered when sea dykes are designed or executed around the western sea which has high tide difference.