DOI QR코드

DOI QR Code

Evaluation of Reinforcement Efficiency and Applicability Using a Reinforcement Method for Liquefiable Ground

액상화 발생 지반에 대한 보강공법 별 보강 효과 및 적용성 분석

  • Yoo, Mintaek (Department of Civil and Environmental Engineering, Gachon Univ.) ;
  • Han, Jin-Tae (Department of Geotechnical Engineering, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Youngjun (Geotechnics & Tunnel Division, Seohyun Engineering) ;
  • Kim, Seok-Jung (Planning and Coordination Department, Korea Institute of Civil Engineering and Building Technology)
  • 유민택 (가천대학교 토목환경공학과 ) ;
  • 한진태 (한국건설기술연구원 지반연구본부) ;
  • 박영준 ((주)서현기술단 지반터널본부 ) ;
  • 김석중 (한국건설기술연구원 경영기획실)
  • Received : 2023.03.21
  • Accepted : 2023.04.03
  • Published : 2023.05.31

Abstract

This study reviewed the liquefaction reinforcement and ground reinforcement methods widely used domestically and abroad through construction method characteristics and analyzed the economic feasibility and reinforcement efficiency of each reinforcement method. The analysis results were used to evaluate the applicability of the appropriate reinforcement method for the liquefaction reinforcement of new and existing structures. As a result of evaluating the applicability of the reinforcement method based on the economic feasibility and reinforcement effect of each reinforcement method, the compaction method, which secures the construct ability by applying large equipment, is advantageous when reinforcing a new structure, and the low-fluidity mortar injection method (C.G.S method) and the high-pressure injection method (J.S.P method) are considered appropriate in the existing structure.

본 연구에서는 국내외에서 널리 사용되고 있는 액상화 보강 및 지반 보강 공법들에 대해 공법 특성별로 검토하고, 각 보강방안의 경제성 및 보강효과를 분석하였다. 또한 분석 결과를 바탕으로 신설구조물 및 기존구조물의 액상화 보강시 적절한 보강 방안 적용성 평가를 수행하였다. 보강방안 별 경제성, 보강효과를 바탕으로 보강 방안의 적용성을 평가한 결과, 신설 구조물의 보강시에는 대형장비를 적용하여 시공성이 확보되는 다짐계열 공법이 유리하며, 기존 구조물에서는 저유동성 몰탈 주입공법(C.G.S공법) 및 고압분사공법(J.S.P공법)의 적용이 적절할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20230105-001, 인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발 - 미래 지하 대공간 안전을 위한 스마트 복합 솔루션 개발).

References

  1. Arulmoli, K., Arulanandan, K., and Seed, H. B. (1985), New Method for Evaluating Liquefaction Potential, Journal of Geotechnical Engineering, Vol.111, No.1, pp.95-114.  https://doi.org/10.1061/(ASCE)0733-9410(1985)111:1(95)
  2. Chae, M., Yoo, M., Lee, I. W., and Lee, M. (2021), A Study on Reliquefaction Behavior of Railway Embankment Using 1g Shaking Table Test, Journal of the Korean Geotechnical Society, Vol.37, No.11, pp.71-81.  https://doi.org/10.7843/KGS.2021.37.11.71
  3. Han, J. T., Choi, J. I., Kim, S. H., Yoo, M. T., and Kim, M. M. (2011), Analysis of Dynamic Earth Pressure on Piles in Liquefiable Soils by 1g Shaking Table Tests, Journal of the Korean Geotechnical Society, Vol.27, No.9, pp.87-98.  https://doi.org/10.7843/KGS.2011.27.9.087
  4. Ishihara, K. and Li, S. I. (1972), Liquefaction of Saturated Sand in Triaxial Torsion Shear Test, Soils and Foundations, Vol.12, No.2, pp.19-39.  https://doi.org/10.3208/sandf1972.12.19
  5. Iwasaki, T., Arakawa, T., and Tokida, K. I. (1984), Simplified Procedures for Assessing Soil Liquefaction during Earthquakes, International Journal of Soil Dynamics and Earthquake Engineering, Vol.3, No.1, pp.49-58.  https://doi.org/10.1016/0261-7277(84)90027-5
  6. KALIS (2020), Guideline for Evaluating seismic performance of existing facilities (foundation and ground). 
  7. KALIS (2023), Guideline for improving seismic performance of existing facilities (foundation and ground). 
  8. KGS (2018), Commentary on Standard Guideline for the Design of Foundation Structures, Korean Geotechnical Society. 
  9. Kim, J. K., Son, H. H., Yoon, W. S., Chae, Y. S., and Choi, I. G. (2008), Evaluation of Liquefaction Remediation of Reclaimed Land by Sand Compaction Pile, In Proceedings of the Korean Geotechical Society Conference (pp.1678-1688), Korean Geotechnical Society. 
  10. Korean Design Standard 17 00 00, Korea Construction Standard Center, pp.13-14. 
  11. Kwon, S. Y., Yoo, M. T., and Kim, S. J. (2018), Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand, Journal of the Korean Geotechnical Society, Vol.34, No.7, pp.29-38.  https://doi.org/10.7843/KGS.2018.34.7.29
  12. Lee, S., Chae, J. S., and Park, S. K. (2001), Reduction Effect of liquefaction by Vibro-Replacement Stone Columns, In Proceedings of the KSR Conference (pp.443-450), The Korean Society for Railway. 
  13. Modoni, G., Croce, P., Proia, R., and Spacagna, R. L. (2019), Guidelines and Codes for Liquefaction Mitigation by Ground Improvement, In Towards a Resilient Built Environment-Risk and Asset Management (Vol.1, No.1, pp.810-817). 
  14. New Zealand Geotechnical Society Inc. (2021), Module 5: Ground Improvement of Soils Prone to Liquefaction. 
  15. Seed, H. B. (1982), Ground Motions and Soil Liquefaction during Earthquakes, Earthquake Engineering Research Insititue, pp.134. 
  16. Shin, E. C., Chung, D. K., Seo, K. C., and Lee, M. S. (2010), Case Study for Improvement of Marine Clay and Dredgedfill Ground by CGS Method, In Proceedings of the Korean Geotechical Society Conference (pp.480-488), Korean Geotechnical Society.