• Title/Summary/Keyword: 저시멘트 콘크리트

Search Result 108, Processing Time 0.031 seconds

The Characteristics of Blastfurnace Slag Blended Cement with Low Blaine Slag Powder (저 분말도 슬래그를 사용한 슬래그 시멘트의 특성)

  • 변승호;최현국;김재영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.19-24
    • /
    • 1998
  • In this study, blended cement with low blaine(2000, 3000$\textrm{cm}^2$/g) blast-furnace slag power by 10-70wt.% was investigated through the measurement hydration heat, physical properties. The experiment results indicated compressive strength was decreased as low blaine slag blended, but hydration heat was reduced significantly and flow of the cement paste was increased.

  • PDF

An Experimental Study on the Resistance of Low-Heat Cement Mortar in Chemical Attack (저발열시멘트 모르터의 호학저항성에 대한 실험적 연구)

  • 문한영;신화철;김성수;강석화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.183-186
    • /
    • 1998
  • This paper deals with 28, 56, 91 days age compressive strength and ratio of weight when OPC and Low-Heat cement mortar immersed in chemical solution. As a result of experiment, the resistance of Low-Heat Cement motar in chemical attack is more effective than that of OPC, because of lower $C_3$A content and Pozzolanic reactions. Especially in long term age compressive strength, Low-Heat cement mortar shows higher strength in all kind of chemical solution compared with compressive strength of OPC motar.

  • PDF

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.

Quantitative Damage Evaluation of Fiber-Reinforced Cement Composite Using Acoustic Emission Technique (음향방출 기법을 이용한 섬유보강 시멘트 복합체의 정량적 손상평가)

  • Lee, Young-Oh;Yun, Yeo-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.457-464
    • /
    • 2009
  • Fiber is an important ingredient in fiber-reinforced cement composite (FRCC) which can control fracture of cement composite by bridging action. In compliance with the action of the fiber and the aggregate size, it also showed a different failure mechanism. For practical application, it is needed to investigate the fracture behavior of the FRCC and to understand the micro-mechanism of cement matrix with reinforcing fiber. In order to evaluate a characteristics of fracture process in the FRCC, acoustic emission (AE) technique was used for the analysis and evaluation of FRCC damage by acoustic emission under flexural and cyclic compressive loadings. The AE signals were monitored by AMSY4 AE instrument during the entire loading period. The specimens are reinforced with 0, 1.0, 1.5 and 2.0% (by volume) Polyvinyl alcohol (PVA) fiber. The test results showed that the damage progress of the FRCC was characteristic for the fiber replacement ratio. As a result of analyzing the felicity ratio (FR) values, it is shown that this values can be used for evaluating the degree of FRCC damage. On the whole the felicity ratio values of FRCC are shown between 0.4 and 1.1. And, the AE kaiser effect was shown in the all FRCC specimen. In addition, the damage behavior and the microscopic fracture process of the FRCC are evaluated using the AE parameters, such as calm ratio, b-value and felicity ratio. The purpose of this reserch was to advance the state of knowledge regarding the applicability of acoustic emission as an evaluation method for FRCC.

Consideration on the Application of Low-Heat Concrete with Ferronickel Slag Aggregate to LNG Storage Tank (페로니켈슬래그 골재를 활용한 저발열 콘크리트의 LNG 저장탱크 적용성 검토)

  • Sang Hyeon Cheong;Sukhoon Pyo;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • The characteristics of low-heat concrete, mixed with ground blast furnace slag and ferronickel slag aggregate, were analyzed. Moreover, the applicability of this concrete for mass concrete in LNG storage tanks was examined. Initially, the study investigated the characteristics of fresh and hardened concrete. Subsequently, the temperature rising curve was obtained. Utilizing the obtained parameters from the curves, a series of thermal stress analyses for the LNG storage tank were conducted to assess the risk of cracking. The results confirmed that concrete mixtures incorporating ground blast furnace slag and ferronickel slag aggregate not only exhibited sufficient workability but also achieved a compressive strength of approximately 40 MPa within 28 days. Furthermore, the concrete demonstrated a lower terminal heat rise and a faster heat generation rate compared to low-heat Portland cement concrete. An analysis of thermal stress in various sections of the LNG tank validated a low risk of cracking.

Relationship between Compressive Strength and Dynamic Modulus of Elasticity in the Cement Based Solid Product for Consolidating Disposal of Medium-Low Level Radioactive Waste (중·저준위 방사성 폐기물 처리용 시멘트 고화체의 압축강도와 동탄성계수의 관계)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Ji-Ho;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Recently, the medium-low level radioactive waste from nuclear power plant must be transported from temporary storage to the final repository. Medium-low level radioactive waste, which is composed mainly of the liquid ion exchange resin, has been consolidated with cementitious material in the plastic or iron container. Since cementitious material is brittle, it would generate cracks by impact load during transportation, signifying leakage of radioactive ray. In order to design the safety transporting equipment, there is a need to check the compressive strength of the current waste. However, because it is impossible to measure strength by direct method due to leakage of radioactive ray, we will estimate the strength indirectly by the dynamic modulus of elasticity. Therefore, it must be identified the relationship between of strength and dynamic modulus of elasticity. According to the waste acceptance criteria, the compressive strength of cement based solid is defined as more than 3.44 MPa (500 psi). Compressive strength of the present solid is likely to be significantly higher than this baseline because of continuous hydration of cement during long period. On this background, we have tried to produce the specimens of the 28 day's compressive strength of 3 to 30 MPa having the same material composition as the solid product for the medium-low level radioactive waste, and analyze the relationship between the strength and the dynamic modulus of elasticity. By controling the addition rates of AE agent, we made the mixture containing the ion exchange resin and showing the target compressive strength (3~30 MPa). The dynamic modulus of elasticity of this mixtures is 4.1~10.2 GPa, about 20 GPa lower in the equivalent compressive strength level than that of ordinary concrete, and increasing the discrepancy according to increase strength. The compressive strength and the dynamic modulus of elasticity show the liner relationship.

Field Application on Mass Concrete of Combined Coarse Particle Cement and Fly-Ash in Mat Foundation (조분(粗粉) 시멘트와 플라이애시를 복합 치환한 매트 기초 매스콘크리트의 현장적용)

  • Han, Cheon-Goo;Jang, Duk-Bae;Lee, Chung-Sub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.11-20
    • /
    • 2010
  • This study carried out a Mock-up test to apply Low-heat Cement (CF) that is adjusted to a fineness of $3,000\;{\pm}\;200\;cm^2/g$ by substituting Coarse particle Cement (CC) and fly ash with ordinary Portland Cement (OPC), then applied it on-site. The result of the test is as follows. The Mock-up test showed that the amount of admixture in CF increased SP agent and AE agent slightly more compared to OPC, while temperature history showed that the highest temperature of CF was around $6{\sim}10^{\circ}C$ lower than that of OPC. Compressive strength in CF was low compared to that of OPC, but the strength width became narrow at the age of 28 days, which is not considered to be significant. In on-site application, slump, air content and chloride content all satisfied the target values, while the temperature history showed that the highest temperature in the center by each cast was about $34^{\circ}C$ in the first cast, $42^{\circ}C$ in the second cast, and $39^{\circ}C$ in the third cast. Compressive strength of specimen for strut management showed low value compared to standard curing, but its strength was reduced at the age of 28 days.

Fundamental Evaluation and Hydration Heat Analysis of Low Heat Concrete with Premixed Cement (저발열형 Premixed Cement를 사용한 콘크리트의 기초물성 평가 및 수화열 해석에 관한 연구)

  • Yoon, Ji-Hyun;Jeon, Joong-Kyu;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump, compressive strength and dry shrinkage according to concrete with premixed cement, ternary concrete and OPC concrete for using concrete with premixed cement. The results of experiment are founded that concrete with premixed cement have sufficient performances such as workability, compressive strength and dry shrinkage. Also, the results of hydration heat analysis are founded that concrete with premixed cement have more performance than ternary concrete and OPC concrete at a point of view for the quality control such as thermal crack reducing and economic benefit. Therefore, it is desirable that concrete with premixed cement should be used to rise durability performance and convenience of maintenance.

Compressive Behavior of Steel Plate-Concrete Structures using Eco-Oriented Cement Concrete (친환경시멘트 콘크리트를 사용한 강판콘크리트구조의 압축거동)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong;Jeoung, Beak-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.583-593
    • /
    • 2012
  • The domestic research of the steel plate concrete structures have been focused on the nuclear structures requiring much strong resistance. There are many advantages in the steel plate-concrete structures such as the possibility of prefabricated production and modular construction. This research tried to establish some basic design information of SC structures toward mid to low-rise general buildings with low strength. To reduce the strength mentioned, the some of the cement in weight was replaced by the soils which are traditional and environmental oriented material where the new system can be used to general buildings. This paper studied on the compressive characteristics, effective length factors, buckling loading, steel plate buckling, and stud strength using the compression member subjected to the concentrated compression loadings.

A Study on Preventive Methods Against Concrete Corrosion by Sea Water of the of West Sea (서해조수에 의한 콘크리트의 부식 방지법에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2622-2633
    • /
    • 1972
  • This study was attempted in order to search for phyosical properties on various mix designs of concrete as ne of studies relating top revention against corrosion by action of sea water in the West Sea. In this study, as concerete mix design, fly ash, pozzolith and vinsolresin were used as admixtures for normal portland cement respectively, and pozzolan cement and normal cement were also used for each plain concrete. Concrete specimens were made and cured in accordance with the Korean Standard Specifications for concrete. In thetest, compressive strengths of the specimens were measured at the following ages; 7-day, 28-days and 3-months. Absorption test was made by immersing the specimens in water kept at boiling temperature for 5 hours. The results obtained from the tests are summarized as follows; 1. The use of fly ash as an admixture in mix design of concrete, has an effect on compressive strength at each age. But it is actually not effective on absorption by concrete, as the result of the fly ash concrete is almost the same at that of ordinary plain concrete. 2. The use of pozzolith as an admixture in mix design of concrete, has an effect on both of compressive strength at each age and absorption rate. The pozzolith is more effective than vinsol resin, relating to improvement for physical proreties of concrete. 3. The use of vinsol resin as an admixture in mix design of concrete, has also an effect on both of compressive strength at each age and absorption rate. As the above fact, effectiveness of the vinsol resin is some what lower than pozzolith, as far as physical properties of the concrete are concerned. 4. Plain concrete used pozzolan cement only is the most effective on both of strength at each age and absorption rate in this study. The pozzolan cement is characteristic of higher strenth as the age is later. 5. Relationship between compreessive strengths and absorption rates of the concrete is shown by a different regression line dependingon ages. The gradient of the regression line is steeper as the age is later. 6. Throught physical test, it may be expected that the use of pozzolith and vinsol resinas asan admixture respectively will be better resistant than fly ash or ordinary plain concrete and that plain pozzolan concrete will also be the best resistant to action of sea water due to improvement of theirphysical properties.

  • PDF