• Title/Summary/Keyword: 저시멘트 콘크리트

Search Result 108, Processing Time 0.029 seconds

Engineering properties of low heat concrete depending On low heat binder and the change in W/B (저발열 결합재 및 W/B 변화에 따른 저열콘크리트의 공학적 특성)

  • Kwak, Yong-Jin;Son, Ho-Jung;Kim, Kyoung-Min;Park, Sang-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.69-70
    • /
    • 2012
  • This paper is to investigate the engineering properties of the concrete incorporating different types of low heat generating binders subjected to various W/B. As expected, it is found that increase of W/B resulted in a decrease of hydration heat and compressive strength. It also showed that the application of high early strength and low carbon type mixture had favorable strength development at early and later age, while hydration heat showed rather higher than existing low heat mixture.

  • PDF

Fundamental Properties of the Low Heat Concrete depending on the Coarse Particle Cement (조분 시멘트의 치환율 변화에 따른 저발열 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Cha, Wan-Ho;Jang, Duk-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.45-48
    • /
    • 2007
  • This study investigates mechanical properties of the concrete using coarse particle cement which is manufactured by the classifying process. The variable factors are 3 types of W/C such as 40, 50, and 60% and 5types of the replacement of the coarse particle cement such as 0, 25, 50, 75, and 100%. As the results, amount of SP agent to secure the target fluidity is gradually declined in accordance with increasing CC replacement. There is no special tendency for target air content, but setting time is delayed according to increasing CC content. The peak of the simple adiabatic temperature rise is gradually decreased in accordance with increasing CC content, and approach time to peak is slightly delayed. The compressive strength is comparatively delayed.

  • PDF

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

Resistance of Freeze-Thaw and Strength Development of Recycled Concrete (재생콘크리트의 강도발현 및 동결융해 저항성 특성)

  • 이진용;이인대;김광우;배성용
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.163-169
    • /
    • 1998
  • The strength and freeze-thaw test were carried out in order to use recycled aggregate as crushed aggregate in concrete. The recycled concrete had a lower flexture and compressive strengths than ordinary concrete, but the inclusion of fly ash shows similar results in both concretes. The resistance of freeze-thaw was strongly influenced by W/C ratio, content of recycled aggregate and fly ash, and it was also found that the resistance was higher when W/C ratio and fly ash content was lower. and was superior when replacement level of recycled aggregate reached to 80%.

An Experimental Stuty on Mass Concrete Durability & Hydration Heat Generation Characteristics according to Kinds of Cement & Form (시멘트 및 거푸집 종류에 따른 매스콘크리트의 내구성 및 수화발열특성에 관한 실험적 연구)

  • Kim, Kang-Min;Moon, Sang-Bong;Song, Yong-Soon;Kang, Suck-Hwa;Choi, Sam-Soon;Cho, Yong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.359-360
    • /
    • 2009
  • This Study is performed Mock-up test accounting for height of placement to review behavior of mass concrete according to kinds of cement & form. First, we measured hydration heat and show a different hydration heat generation characteristics as compared with each other. And we measured mortar outflow, the strength of concrete core and standard specimens, concrete's ability to resist chloride ion penetration in order to durability estimation of concrete. This study was aims to improve quality of mass concrete under marine environment.

  • PDF

Permeability and Freeze-Thaw Resistance of Latex Modified Concrete (라텍스 개질 콘크리트의 투수성 및 동결융해 저항 특성)

  • 김기헌;이종명;홍창우;윤경구
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.484-490
    • /
    • 2001
  • This study focused on the investigation of durability of latex modified concrete in the points of chloride ion permeability and freeze-thaw resistance as latex content variated such as 5%, 10%, 15% and 20%. When latex was mixed in concrete and cured, the concrete consisted of hydrated cement and aggregate interconnected by a film of latex particles. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. The increase in flexural strength might be attributed to the latex films between the hydrated cement and aggregates, and the decrease in compressive strength to the flexibility of the latex component named by Butadiene. The rapid chloride permeability test was used to evaluate the relative permeability of latex-modified concretes and conventional concretes. The results showed that the permeability of latex-modified concretes was considerably lower than conventional concretes tested, which might be due to the latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles. The freeze-thaw resistance of LMC was quite good comparing to conventional concrete. Air entraining agent has been used in conventional concrete to improve the freeze/thaw resistance, but latex modified concrete does not need additional air entraining agent for freeze-thaw resistance provided adequate cure occurs.

A Study on Quality Improvement of Mortar Using Fine Particle Cement (미분시멘트를 사용한 모르터의 품질향상에 관한 연구)

  • Lee, Jae-Youn;Lee, Chung-Sub;Back, Dae-Hyun;No, Dong-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.327-328
    • /
    • 2009
  • This study was conducted to substitute blast furnace slag powder and gypsum activator for the purpose of improving mortar quality with fine particle cement extracted using particle size screening in the cement manufacturing process. While flowability and early strength were reduced, partial compressive strength showed increase on the 28th day.

  • PDF

A Study on the Properties of Low-Heat Cement Concrete (저발열시멘트 콘크리트의 기초적 성질에 대한 연구)

  • 문한영;김성수;신화철;강석화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.57-60
    • /
    • 1997
  • The properties of Low-heat cement are especially in lower heat of hydration than that of other types of cement. In other respect, Low-heat concrete is more advantageous than OPC concrete in chemical resistance, long term age compressive strength, slump loss and resistance to seawater. This paper deals with 28 days age compressive strength and slump loss by elapsed time of mortar and concrete that made with Low-heat cement and 3 types of other cement.

  • PDF