• Title/Summary/Keyword: 저분자화

Search Result 98, Processing Time 0.04 seconds

Lignin Reactions During Alkali and Sulfate Pulping (알칼리 및 설페이트 펄프화중(化中)의 리그린반응(反應))

  • Yoon, Byung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.67-75
    • /
    • 1982
  • 모텔리그닌의 펄프화(化) 처리(處理) 및 폐액(廢液)리그닌의 반응생성물(反應生成物)로부터 알칼리 및 설페이트 펄프화중(化中)에 일어나는 반응양식(反應樣式)을 조사(調査)한 것이다. 알칼리의 처리결과(處理結果)는 친핵시약(親核試藥)에 의해 페놀레이트 이온이 생성(生成), 퀴논메타이드 중간체(中間體)를 걸쳐 $C_6-C_3$ 단위(單位)의 ${\alpha}$위(位) aryl은 탈리(脫離)하여, 리그닌은 저분자화(低分子化)가 시작되고, 저분자생성물(低分子生成物)은 축합반응(縮合反應)에 의해 극(極)히 일부(一部)는 고분자화(高分子化)된다. 저분자화(低分子化)된 리그닌은 산화(酸化)에 의해 퀴노이드 착색구조(着色構造)를 형성(形成)한다. 페놀성의 일부(一部) 및 비(非)페놀성리그닌은 oxirane와 thiirane의 중간체(中間體)를 거쳐 $C_6-C_3$ 단위(單位)의 ${\beta}$위(位)의 arylether가 탈리(脫離)된다. 그러나, hydrosulfide 이온은 hydroxide 이용 보다 강(强한)한 친핵종(親核種)이므로 thiirane의 중간체(中間體) 생성(生成)이 용량(容量)하여 개열(開裂)이 더욱 촉진(促進)된다. 저분자(低分子)리그닌의 고분자축합(高分子縮合)은 벤젠핵(核)의 2.6 위(位)보다 5위(位)에 축합(縮合)이 많이 일어 난다.

  • PDF

Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation (이온화 방사선 조사에 의해 얻어진 저분자 laminarin의 분자구조 특성)

  • Choi, Jong-Il
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.780-783
    • /
    • 2013
  • Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation (과산화수소/초음파를 이용한 알지네이트의 저분자화)

  • Choi, Su-Kyoung;Choi, Yoo-Sung
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • A high molecular weight natural sodium alginate (HMWSAs) was depolymerized by hydrogen peroxide ($H_2O_2$) with ultrasonic irradiation. The effects of the reaction conditions such as reaction temperature, reaction time, hydrogen peroxide concentration and ultrasonic irradiation time on the molecular weights and the end groups of the depolymerized alginates were investigated. It was revealed that depolymerization occurred through the breakage of 1,4-glycosidic bonds of sodium alginate and the formation of formate groups on the main chain under certain conditions. The changes in molecular weight were monitored by GPC-MALS. The molecular weight of 2 wt% alginate solution decreased from 450 to 15.9 kDa for 0.5 hrs at 50 $^{\circ}C$ under an appropriate ultrasonic irradiation. The PDI(polydispersity index)s of the alginate depolymerized in this study were considerably narrow in comparison with those obtained from the other chemical degradation method. The PDIs were in the range of 1.5~2.5 in any reaction conditions employed in this study.

Degradation of Fucoidan by Contact Glow Discharge Electrolysis Using Organic Electrolyte (유기산전해질을 이용한 접촉 글로우 방전 전기분해공정에서 후코이단의 저분자화)

  • Cha, Seong-Han;Lee, Jung-Shik;Kim, Young-Suk;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.704-709
    • /
    • 2011
  • Depolymerization of fucoidan induced by contact glow discharge electrolysis(CGDE) was investigated. To utilize fucoidan as a functional food material after CGDE, organic acids were used as a electrolyte in CGDE process. Experimental results showed that CGDE using organic acid reduced the molecular weight of fucoidan effectively. As electrolyte concentration increased, onset voltage of glow discharge decreased and onset current of glow discharge increased. From the variation of molecular weight of fucoidan with the reaction time, it was demonstrated that the degradation of fucoidan followed a first-order rate law. Molecular weight of fucoidan treated with CGDE using organic acid was about 77 times lower compared to initial fucoidan with little free sulfate.

Depolymerization of Fucoidan by Contact Glow Discharge Electrolysis(CGDE) (접촉 글로우 방전 전기분해(CGDE)에 의한 후코이단의 저분자화)

  • Bae, Jung Shik;Lee, Jung Shik;Kim, Young Suk;Sim, Woo Jong;Lee, Ho;Chun, Ji Yeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.886-891
    • /
    • 2008
  • Contact glow discharge electrolysis(CGDE) is an unconventional electrolysis where plasma is sustained by D.C. glow discharge between an electrode and the surface of electrolyte surrounding it at high voltage. In this study, the behavior of CGDE in NaCl solution and the depolymerization of fucoidan by CGDE were investigated. After onset of CGDE, increase of voltage enhanced Glow discharge which resulted in low current density and low temperature in NaCl electrolyte. From the variation of molecular weight of fucoidan with the reaction time, it was demonstrated that the degradation of fucoidan followed a first-order rate law. Molecular weight of fucoidan treated with CGDE was about 40 times lower compared to initial fucoidan without content decrease of sulfate and fucos.

Effect of Low Molecular Alginates on Cholesterol Levels and Fatty Acid Compositions of Serum and Liver Lipids in Cholesterol-Fed Rats (저분자화알긴산이 콜레스테롤식이 흰쥐의 혈청과 간장지질의 콜레스테롤 수준 및 지방산 조성에 미치는 영향)

  • LEE Dong-Soo;NAM Taek-Jeong;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.399-408
    • /
    • 1998
  • The effect of low molecular alginates feeding on the cholesterol levels and fatty acid compositions of rat serum and liver lipid were investigated. After one week basal diet feeding, four week old Sprague-Dawley male rats were fed with water soluble and acid $\cdot$alkali soluble alginate extracted from sea mustard (Undaria pinnatifida) and giant kelp (Macrocystis pyrifera), and their low molecular alginates prepared by the HCl partial hydrolysis. The feeding efficiency of the alginate fed group was ranged in 0.37$\~$0.44, which was 0.03$\~$0.05 lower than that of the basal diet group. Also, there was much less increase of liver weight in the alginate fed group. The water soluble alginate showed more significant effect in reducing the total cholesterol, free cholesterol, LDL-cholesterol, triglyceride and phospholipid of serum and liver lipid than the acid$\cdot$alkali soluble alginate. The effect was much better with low molecular alginate (reducing effect by the low-molecularization : Water soluble alginate - serum lipid; total cholesterol $59\%$, free cholesterol $65\%$, LDL-cholesterol $96\%$, triglyceride $50\%$, and phospholipid $36\%$. liver lipid: total cholesterol $4\%$, free cholesterol $62\%$, LDL-cholesterol $44\%$, triglyceride $33\%$, and phospholipid $44\%$. acid$\cdot$alkali soluble alginate - serum lipid; total cholesterol $52\%$: free cholesterol $97\%$, LDL-cholesterol $78\%$ triglyceride $32\%$, and phospholipid $64\%$. liver lipid; total cholesterol $11\%$, free cholesterol $12\%$, LDL-cholesterol $10\%$, triglyceride $27\%$, and phospholipid $21\%$). The effect of low molecular alginate feeding on the fatty acid composition of serum and liver lipid reflects the remarkable increase of polyenoic acid, over $44\%$ in serum lipid and about $70\%$ in liver lipid, comparing to the cholesterol fed group. The overall results indicated that feeding of low molecular alginates improves physiological function of rats by changing the serum and liver lipid composition.

  • PDF

Depolymerization of Kraft Lignin at Water-Phenol Mixture Solvent in Near Critical Region (물-페놀 혼합 용매의 근임계 하에서의 크래프트 리그닌의 저분자화)

  • Eom, Hee-Jun;Hong, Yoon-Ki;Chung, Sang-Ho;Park, Young-Moo;Lee, Kwan-Young
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • Plant biomass has been proposed as an alternative source of petroleum-based chemical compounds. Especially, aromatic chemical compounds can be obtained from lignin by depolymerization processes because the lignin consist of complex aromatic materials. In this study, kraft lignin, the largest emitted substance among several kinds of lignin in Korea, was used as a starting material and was characterized by solid-state $^{13}C$-Muclear Magnetic Resonance($^{13}C$-NMR), Fourier Transform Infrared Spectroscopy(FT-IR), Elemental Analysis(EA). The depolymerization of kraft lignin was studied at water-phenol mixture solvent in near critical region and the experiments were conducted using a batch type reactor. The effects of water-to-phenol ratio and reaction temperature($300-400^{\circ}C$) were investigated to determine the optimum operating conditions. Additionally, the effects of formic acid as a hydrogen-donor solvent instead of $H_2$ gas were examined. The chemical species and quantities in the liquid products were analyzed using gas chromatography-mass spectroscopy(GC-MS), and solid residues(char) were analyzed using FT-IR. GC-MS analysis confirmed that the aromatic chemicals such as anisole, o-cresol(2-methylphenol), p-cresol(4-methylphenol), 2-ethylphenol, 4-ethylphenol, dibenzofuran, 3-methyl cabazole and xanthene were produced when phenol was added in the water as a co-solvent.

Depolymerization of Kraft Lignin over a Ru-Mg-Al-oxide Catalyst (Ru-Mg-Al-oxide 촉매 상에서 크라프트 리그닌의 저분자화 연구)

  • Kim, Han Ung;Limarta, Susan Olivia;Jae, Jungho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.190-197
    • /
    • 2021
  • Kraft lignin is a by-product of the pulp and paper industry, obtained as a black liquor after the extraction of cellulose from wood through the Kraft pulping process. Right now, kraft lignin is utilized as a low-grade boiler fuel to provide heat and power but can be converted into high-calorific biofuels or high-value chemicals once the efficient catalytic depolymerization process is developed. In this work, the multi-functional catalyst of Ru-Mg-Al-oxide, which contains hydrogenation metals, acid, and base sites for the effective depolymerization of kraft lignin are prepared, and its lignin depolymerization efficiency is evaluated. In order to understand the role of different active sites in the lignin depolymerization, the three different catalysts of MgO, Mg-Al-oxide, and Ru-Mg-Al-oxide were synthesized, and their lignin depolymerization activity was compared in terms of the yield and the average molecular weight of bio-oil, as well as the yield of phenolic monomers contained in the bio-oil. Among the catalysts tested, the Ru-Mg-Al-oxide catalyst exhibited the highest yield of bio-oil and phenolic monomers due to the synergy between active sites. Furthermore, in order to maximize the extent of lignin depolymerization over the Ru-Mg-Al-oxide, the effects of reaction conditions (i.e., temperature, time, and catalyst loading amount) on the lignin depolymerization were investigated. Overall, the highest bio-oil yield of 72% and the 3.5 times higher yield of phenolic monomers than that without a catalyst were successfully achieved at 350 ℃ and 10% catalyst loading after 4 h reaction time.