• Title/Summary/Keyword: 저류시스템

Search Result 290, Processing Time 0.028 seconds

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

Analysis of Hydrologic Behavior Including Agricultural Reservoir Operation using SWAT Model (농업용 저수지 운영을 고려한 SWAT 모형의 수문학적 거동 분석)

  • Lee, Yong-Jun;Park, Min-Ji;Park, Ki-Wook;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.20-30
    • /
    • 2008
  • This study is to analyse the hydrological behavior of agricultural reservoir using SWAT model. For the upsteam watershed of Gongdo water level gauge station in Anseongcheon watershed, the streamflows at 2 reservoir (Gosam and Geumgwang) locations and Gongdo station were simulated with reservoir inclusion and exclusion. The daily water surface area and storage have been calculated considering the stage-storage curve function of the reservoir. Afterwards, the reservoir operation module in SWAT was modified from original module in SWAT for daily reservoir discharge simulated by water balance equation. Model validation results were Nash-Sutcliffe model efficiency coefficients value of 0.55, root mean square error value of 2.33 mm/day. On the other hand, the simulation results of two reservoir exclusion were Nash-Sutcliffe model efficiency coefficients value of 0.37, root mean square error value of 2.91 mm/day. The difference of Nash-Sutcliffe model efficiency coefficients between the simulation results of two reservoir inclusion and exclusion at Gongdo station was 0.18. This is caused by the storage and release operation of agricultural reservoirs for the runoff occurred at 2 reservoir watersheds.

  • PDF

Development of Reservoir Operation Model using Simulation Technique in Flood Season (I) (모의기법에 의한 홍수기 저수지 운영 모형 개발 (I))

  • Sin, Yong-No;Maeng, Seung-Jin;Go, Ik-Hwan;Lee, Hwan-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.745-755
    • /
    • 2000
  • The dam operation system of KOWACO for flood control doesn't have capability to account for the downstream hydrologic conditions and any feasible index to decide the pre-release from the forecasted rainfall and inflow. In this study, a dam operation model for flood control was developed to account for the flood flow condition of its downstream to give users the dam release schedules. Application test of EV ROM to Keum River showed that EV ROM is superior to the Rigid ROM and Technical ROM which are currently used by KOWACO. EV ROM developed in this study provides a release schedule accounting for the cumulative lateral flow hydrograph at the downstream control points where the discharge does not depend only on the dam operation. but also on lateral inflow from the tributaries. In order to reduce the peak discharge at the control points, it suggests the preliminary release during the early rising phase of the predicted hydrograph, holding the flood flow inside the dam during a peak phase, and afterward resuming the release. Three case studies of flood control by the operation of Daechung Multipurpose Dam in Geum River Basin show that the EV ROM is superior to the Rigid ROM and Technical ROM. This must be due to its nature to account for the downstream flow condition as well as the inflow and water level of the dam. It was also conceived that further case studies of EV ROM and more accurate rainfall prediction would improve the dam operation for flood control.ontrol.

  • PDF

Comparative Analysis of Shallow and Deep Groundwater Pumping Effects on Stream Depletion (천부와 심부지하수 양수에 따른 하천수 감소 영향의 비교분석)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.383-391
    • /
    • 2020
  • In this study, Hunt's analytical solution and Ward & Lough's analytical solution for two-layered leaky aquifer system were used to estimate stream depletions due to shallow and deep groundwater pumping, and their differences were compared. Depending on the combination of the separation distance between the stream and the well, the transmissivity and the storage coefficient of the aquifer, and the leakage coefficient between the upper and lower layers, the stream depletion, which is the amount of stream water reduction compared to the amount of groundwater pumping, for each of 45,000 cases was calculated for both shallow and deep groundwater pumping, and the differences were analyzed quantitatively. When the leakage coefficient was very small, with a value of 10-61/d, the difference in the average five-year stream depletion due to the pumping of shallow and deep groundwater showed a large deviation of up to 0.9 depending on the given hydraulic characteristics; this value exponentially decreased as the stream depletion factor (SDF) increased. This exponential relationship gradually weakened as the leakage coefficient increased due to interaction effects between layers, resulting in a small difference of up to 0.2 when the leakage coefficient reached 10-31/d. Under the condition of greater interlayer hydraulic connectivity, there was little influence of the depth of groundwater pumping on the stream water reduction.

Annual Groundwater System Change in Geum-gang Basin (금강 수계 지하수 시스템의 연간 물수지 변화 추정)

  • Kim, Ji-Eun;Kim, Tae-Hee
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.49-57
    • /
    • 2011
  • Water budget analysis in the groundwater system was conducted in order to understand water budget distributions in the ground water system in Geum-gang watershed. The annual amounts of precipitation, runoff, evapotranspiration, dam storage change and water supply over the sub-watershed in Geum-gang watershed were evaluated the residual groundwater from 2002 to 2006, based on the water budget considering inflow and outflow. Then we are able to expect residual groundwater of each sub-basin. According to the result of study, the year 2003 and 2006 were recorded the highest and the lowest precipitation value, respectively. Average run-off percentage against precipitation was 60.44%. Annual evapotranspiration in each of years didn't show the remarkable variations but the values were high in the lower reaches of the basin. The residual waters in Geum-gang basin were determined to be 133.36 in 2002, 77.64 in 2003, -19.40 in 2004, -82.25 in 2005 and -128.07 mm in 2006. The residual water in Geum-gang basin was high in the main and up stream such as Maepo. Also the residual water showed low distributions in Nonsan and Seokhwa.

Fouling Control Technique of Membrane Using Simultaneously Washing Process (동시세정방식을 이용한 막의 fouling 억제기술)

  • Choi, I-Song;Son, Chang-Sun;Kim, Sung-Yoon;Lim, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1637-1641
    • /
    • 2009
  • 본 연구는 막공정을 이용하는 수처리기술에 있어서 최대 난점 중의 하나인 fouling 현상을 억제하기 위하여 여과방향의 반대방향에서 여과수를 지속적으로 분사하여 줌으로써 여과와 세정이 동시에 일어나는 동시세정방식을 평가하기 위한 것이다. 실험은 성균관대학교 환경플랜트 내에 pilot 실험지를 조성하여 실시하였으며, 실험원수는 오수처리방류수를 저류하는 연못수와 오수원수를 혼합하여 농도를 조절한 후에 저농도와 고농도 조건에서 실험을 실시하였다. 저농도 조건(SS 10$\sim$20 mg/L)에서는 연못의 HRT를 고려하여 일일 5시간 씩 8일간 가동하였고, 고농도 조건(SS 200 mg/L 이상)에서는 8시간씩 가동하였다. 저농도의 경우에는 가동기간 중 배수가 일어나지 않았고, 일일 운전 종료 후 유지관리를 위한 강제배수만 실시하였다. 고농도에서는 초기에 배수가 짧은 term으로 자주 일어났지만, 20분 이상의 비교적 긴 여과지속시간을 유지하였고 유입수 농도가 낮아지면서 배수타임이 점점 늘어나는 경향을 보였다. 이러한 결과는 동시세정방식에 의한 여과기술에 있어 유입수 농도가 fouling 발생빈도에 크게 영향을 미친다는 것을 의미하며, $5\;{\mu}m$의 미세막에서도 고농도 운전이 가능하다는 사실을 보여준다. 동시세정방식은 Rum Filter의 fouling을 억제하고 지속적인 운전을 가능하게 해주는 핵심기술이다. 세정 시 세정압력설정은 매우 중요한 운전인자 중 하나인데, 세정압력이 너무 클 경우에는 소요되는 동력이 많아져 효율적인 설계 및 운전에 장애요인이 될 수 있고, 너무 낮을 경우에는 세정이 제대로 되지 않고 여과막 내부와 외부의 압력차를 크게 가져와 배수타임이 빨라지는 결과를 초래한다. 따라서 적절한 세정압력을 파악하고 설정하기 위하여 세정압력을 변화시켜가면서 이에 따른 차압의 변화를 관측하여 보았다. 여과막의 공극과 세정압력에 변화를 주면서 실험을 한 결과, 세정압력이 커지면 여과막에 작용하는 부하가 약간 증가하는 것으로 나타났지만, 그 차이가 $0.02\;kg_f/cm^2$으로 나타나, $4.0\;kg_f/cm^2$ 이상의 세정압력에서 적용이 가능한 것으로 나타났다. 또한, 유입유량을 설정하기 위하여 $4.5\;kg_f/cm^2$의 세정압력을 유지한 상태로 유입유량을 점진적으로 증가시키면서 압력의 변화를 관측하였다. $5\;{\mu}m$에서는 180 LPM 및 200 LPM에서, $8\;{\mu}m$에서는 200 LPM에서 자체적으로 설정한 배수차압 상승분인 $0.1\;kg_f/cm^2$를 초과한 것으로 나타났고, $10\;{\mu}m$ 이상에서는 모두 200 LPM이상 처리해도 배수압력에 걸리지 않는 것으로 나타났다. 이러한 결과는 현재 본 시스템에 적용하고 있는 유입유량 기준치를 2배 이상 상회하는 결과로서 추가적인 실험을 통하여 기존 여과기술보다 여과지속시간이길고, 여과 flux가 높은 기술을 개발할 수 있을 것으로 판단된다.

  • PDF

Preliminary Assessment of Groundwater Artificial Recharge Effect Using a Numerical Model at a Small Basin (수치모델을 이용한 소분지에서의 지하수 인공함양 효과 예비 평가)

  • Choi, Myoung-Rak;Cha, Jang-Hwan;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2020
  • In this study, the effects of groundwater artificial recharge through vertical wells in the upper small basin are preliminarily evaluated by using field injection test and a 3-D numerical model. The injection rate per well in a model is set to 20, 37.5, 60, and 75 ㎥/day based on the results of field injection test, groundwater levels, and hydraulic conductivities estimated from particle size analysis, and a numerical model using MODFLOW is conducted for 28 cases, which have diverse injection intervals, in order to estimated the changes of groundwater level and water balance after injection. Groundwater level after injection does not show a linear relationship with the injection rate per well, and the cumulative effect of artificial recharge decreases and the timing of maximum water level rise is shortened as the injection interval becomes longer. In four cases of continuous injection with total injection rate of 1,200 ㎥, it is revealed that the recharge effect is analyzed as 36.5~65.3% of the original injection rate. However, it will be more effective if the artificial recharge system combined with underground barrier is introduced for the longer pumping during a long and severe drought. Additionally, it will be possible to build a stable artificial recharge system by an establishment of efficient scenario from recharge to pumping as well as an optimization of recharge facilities.

Effect on water quality and fish habitat improvement of Wonju Cheon by instream flow increasing (유지유량증가 방안에 따른 원주천 수질 및 어류서식환경 개선효과)

  • Choi, Heung Sik
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 2008
  • For improving water quality and hish habitat environment the targeted instream flows added to the field measurement of low flow at each reach along Wonju Cheon are calculated by depth, velocity, and the present lower channel width with considering the landscape, aquatic environment, and natural ecological function. Target instream flow increasing ranged from $0.03m^3/s$ of upstream to $0.90m^3/s$ of downstream according to the proposed depths of 0.10m to 0.30m and velocity of 0.2m/s. The methods for target instream flow increasing are base flow increasing by watershed management, non polluted discharge inflow from valley and combined sewer by sewerage system modification, and discharges from upstream reservoirs and detention basins near-by stream. The possible increasing flow rates are $0.19m^3/s$ to $3.42m^3/s$ which are 1.4 to 2.5 times of low flow to be measured which are the equivalent targeted instream flows along Wonju Cheon. The BOD-based water quality improvement are analyzed by QUAL2E. The habitat suitability indices by PHABSIM of Zacco temmincki as target species at middle stream of Wonju Cheon improve significantly by low flow increasing, which is very important to improve water quality and fish habitat.

  • PDF

Development and Validation of Reservoir Operation Rules for Integrated Water Resources Management in the Geum River Basin (금강유역의 유역통합수자원관리를 위한 저수지 운영률 개발 및 적용성 검토)

  • Cheong, Tae-Sung;Kang, Sin-Uk;Hwang, Man-Ha;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.433-444
    • /
    • 2008
  • In recent, the integrated water resources management should consider not only existing management objects such as water supply, power generation, and instream flows but also new management objects such as water quantity, water quality, and water habitats which management system is large and complex. Moreover, integrated basin plan or operation are needed for solving conflicts problems between basins and between water usages and to maximize water resources usages. To increase use of optimization method for actual operation and apply various objects, a reservoir operation rule was developed and the KModSim's hydrologic states for integrated water resources management were tested in this study. The simulation results show that the developed operation rules applied in hydrologic states good represent the actual storages of both the Yongdam and the Daecheong Reservoirs so, it is possible to improve the water allocation method usually used in the basin management and manage the integrated basin water resources if new operating rules are applied in optimized programming.