• Title/Summary/Keyword: 재활용 장치

Search Result 145, Processing Time 0.03 seconds

Measurement Method of Final Residual Radioactivity of Radioactive Metallic Waste for Clearance (규제해제 대상 방사성 금속 폐기물 최종잔류방사능 측정법)

  • Seo, Bumkyoung;Ji, Youngyong;Hong, Sangbum;Lee, Keunwoo;Moon, Jeikwon
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • It has been continuously generated the requirement for the replacement of the main components such as a steam generator due to the deterioration of the nuclear power plant all around the world. Also, a large amount of radioactive metal was generated during the decommissioning in a short period. It is required to make an accurate measurement of the residual radioactivity for recycling the metal waste for releasing from regulatory control. In planning the measurement procedures, the influence of geometry, self-absorption, density and other relevant factors on the representativeness of the measurements should be considered for the decommissioning metal waste. In this study, the method for measurement procedures, the source term evaluation, the ways to secure representative samples, the measurement device for wide area and the self-absorption correction factors for different density were evaluated. The metal samples for measurement were prepared for securing the simple geometry and representative by melting process. The developed correction method for measuring the radioactivity a variety density of metal waste could improve the reliability of the evaluation results for clearance.

A Study of Process factors on the Recycling of Reactive Metal Scraps in Plasma Arc Remelting (Plasma Arc Remelting에서 활성 금속 Scrap 재활용에 미치는 공정인자의 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.3-9
    • /
    • 2017
  • In this study, plasma arc remelting behaviors according to arc current, arc voltage, and types of plasma gas were investigated using Kroll processed Ti sponges as anode. In the discharge pressure range of vacuum pump ($200{\sim}300kgf/cm^2$), the arc voltage did not vary greatly with the increase of discharge pressure at a given arc length. This means that the pressure in the vacuum chamber during operation hardly changes and the atmospheric pressure maintains. Under various conditions of arc currents (700~900A), the arc voltage slightly increased with arc current. The effects of anode materials and operational variables on the arc length-arc voltage relationship were compared with the results in previous studies. When the atmospheric gas changed from argon to helium, double effect of improvement on the output of the steady state was observed. The increase of output in the plasma arc device was accompanied by an increase in the melting rate of the Ti sponge and the quality of the ingot surface was also improved. The plasma arc remelting of the new scrap titanium and the old scrap zirconium alloy could result in the fabrication of an ingot with high surface quality.

Magnetic Properties and Application of Caltalysts in Biginelli Reaction for the Ni and Ni@C Synthesized by Levitational Gas Condensation (LGC) (부양증발응축법으로 제조된 Ni과 Ni@C의 자성특성 및 Biginelli 합성 촉매 적용연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.87-91
    • /
    • 2017
  • Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.

Microbial Inactivation in Kimchi Saline Water Using Microwave Plasma Sterilization System (Microwave Plasma Sterilization System을 이용한 배추 절임수의 미생물 저감화)

  • Yu, Dong-Jin;Shin, Yoon-Ji;Kim, Hyun-Jin;Song, Hyeon-Jeong;Lee, Ji-Hye;Jang, Sung-Ae;Jeon, So-Jung;Hong, Soon-Taek;Kim, Sung-Jae;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.123-127
    • /
    • 2011
  • This study was conducted to decrease the microbial hazard in kimchi saline water with microwave plasma sterilization system and to evaluate the inactivation of foodborne pathogens by the microwave plasma sterilization system as a non-thermal treatment. Contamination of coliform, Escherichia coli, and yeasts and molds were detected in the used saline water, and the microbial populations increased as the saline water was reused repeatedly. The $D_{10}$-values of E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes by the microwave plasma sterilization system were 0.48, 0.52, and 0.45 cycle, respectively. In addition, the microbial populations of coliform, E. coli, Salmonella spp., total aerobic bacteria, and yeasts and molds in the used kimchi saline water were significantly decreased by treating the saline water using the microwave plasma sterilization system. Therefore, these results suggest that microwave plasma sterilization system can be useful in improving the microbial safety of the used saline water.

Membrane Fouling Control Effect of Periodic Water-back-flushing in the Tubular Carbon Ceramic Ultrafiltration System for Recycling Paper Wastewater (제지폐수 재활용을 위한 관형 탄소계 세라믹 한외여과장치에서 물 역세척의 막오염 제어 효과)

  • 김미희;박진용
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.190-203
    • /
    • 2001
  • In this study the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes with periodic water-back-flushing. We could investigate effects of watch-back-flushing period, transmembrane pressure (TMP) and flow rate, and find optimal operating conditions. The back-f1ushing time (BT) was fixed at 3 sec, and fi1tration times (FT) werc changed in 15~60 scc, TMP in 1.00~2.50$kg_{f}$/$cm^2$, and the flow rates in 0.27~1.75 L/min. The optimal conditions were discussed in 7he viewpoints of dimensionless permeate flux (J/J$_{0}$), total permeate volume ($V^T$) and resistance of membrane fouling ($R^f$). Optima1 back-flushing period was BT/FT=0.20, suggesting that the frequent back-flushing should decrease membrane fouling. Optimal TMP in the viewpoint of $V^T$ was 1.00~1.55$kg_{f}$/$cm^2$, suggesting that rising TMP should increase membrane fouling and decrease permeate flux. But, rising f1ow rate should decrease membrane fouling and increase permeate flux. Then, average rejection rates of pollutants filtratedby carbon ceramic membranes were 88~98 % for turbidity, 48~72% fort $COD_{cr}$ and 37~76% for TDS.

  • PDF

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Disassembly of the Package/PCB on Wasted LED Light and their Characterizations (LED 조명 모듈에 장착된 패키지/PCB의 분리 및 특성)

  • Seunghyun Kim;Ha Bich Trinh;Taehun Son;Jaeryeong Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.3-9
    • /
    • 2023
  • Separation of LED packages from PCBs and analysis of the adhesive components was conducted to enhance the recycling potential of LED modules. LED package was separated from PCBs using heat treatment under optimal conditions: temperature of above 250 ℃ and time of 20 minutes. The separation equipment can be established using a hot air injector with controlling the rotational speed of the internal screw. The separation efficiency of each type of substrate (aluminum and glass fiber) was investigated with the thickness range of the adhesive materials (0.25-0.30 and 0.30-0.35 mm). Under the optimal conditions, the efficiency can reach to 97.5% for both types of substrates with adhesive materials of thickness 0.25~0.30mm. Characterization of the residual adhesive substances from the separated LED package and PCB using microwave digestion and ICP analysis showed that the residue contained of 95% of Sn, less than 5% of Cu and Ag.

Characteristics Evaluation of Combustion by Analysis of Fuel Gas Using Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (배연가스 분석에 의한 가연성과 유기성폐기물을 혼합한 고형화연료 연소 특성평가)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.27-39
    • /
    • 2009
  • The main objective of this study is to investigate the characteristics of combustion by analyzing fuel gases from a combustion equipment with various combustion conditions for refuse-derived fuels (RDFs). CO gas is a parameter for indicating of incomplete combustion during a combustion process. The lowest CO gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. $CO_2$ gas is a final product after complete combustions. The highest amount of $CO_2$ gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. The highest level of $SO_2$ gas was produced in S.1 sample containing the highest sulfur. The highest level of NOx gas was produced in S.1 sample with the highest nitrogen content and air-fuel condition of m=2 under temperature of $800^{\circ}C$. HCl gas that is generated by reacting with metals catalyst through oxygen catalyst reaction during combustion process is a precursor of dioxin formation. The higher level of HCl gas was produced in the sample with higher chlorine content. The lowest level of HCl gas was produced when the experiment conditions were air-fuel condition of m=2 and $800^{\circ}C$. The lowest level of $NH_3$ gas was generated when the experiment condition was m=2 under air-fuel condition and after 3 minutes. Air-fuel condition is more important to create $NH_3$ gas than operating temperatures. Higher level of $H_2S$ gas was generated in S.1 sample with the higher sulfur content and was created in RDFs that contain higher mixture ratios of sewage sludge and food wastes. A result of combustion, gases and gases levels from the combustion of S.1 and S.2 were very similar to the combustion of a stone coal. As results of this research, when evaluating the feasibility of the RDFs, the RDFs could be used as auxiliary and main fuels.

  • PDF

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.