• Title/Summary/Keyword: 재순환 배기

Search Result 239, Processing Time 0.026 seconds

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate (하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

Characteristics of Air Pollutants Emission from Medium-duty Trucks Equipped EGR and SCR in Korea (국내 EGR과 SCR 장착 중형트럭 대기오염물질 배출 특성)

  • Son, Jihwan;Kim, Jounghwa;Jung, Sungwoon;Yoo, Heungmin;Hong, Heekyung;Mun, Sunhee;Choi, Kwangho;Lee, Jongtae;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.130-136
    • /
    • 2016
  • NOx and PM are important air pollutants as vehicle management policy aspect. Medium-duty truck is the main source of the pollutants although the vehicle market share is only 3.5%. National emission portion of NOx and PM form the mobile sourece are 14% and 16% respectively. In this study it was investigated that characteristics of air pollutants emission on medium duty truck equipped with EGR and SCR system. Vehicle's test reflected driving cycle on the chassis dynamometer, and applied test cycle was WHVC(World Harmonized Vehicle Cycle) mode. The test cycle include three segments, represent urban, rural and motorway driving. Based on the test results NOx, PM, HC were less emitted form SCR vehicle than EGR vehicle. And CO was less emitted form EGR vehicle than SCR vehicle due to CO oxidation reaction on DPF surface. And most air pollutants reduced as average vehicle speed increased. Pollutants were less emitted on motorway section than urban and rural sections. But highly NOx emission on motorway section was verified according to increased EGR ratio on fast vehicle speed. HC and CO additional emission was identified as 68%, 58% respectively during SCR vehicle's cold engine start emission test. NOx additional emission was detected by 24% on SCR vehicle's condition of engine cold start while not detected on vehicle equipped with EGR. SCR vehicle's additional NOx emission was derived from low reaction temperature during engine cold start condition. medium-duty truck emission characteristics were investigated in this study and expected to used to improve air pollutants management policy of medium-duty truck equipped with SCR & EGR.

The Effects of Exhaust Gas Recirculation on Non-premixed Combustion (배기가스 재순환이 비예혼합 연소시스템에 미치는 영향)

  • Yu, Byeonghun;Kim, Jinsu;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.26-33
    • /
    • 2014
  • We examined the characteristics of $NO_x$ emission for CH4/air non-premixed flames using the exhaust gas recirculation(EGR) methods, which are the air-induced EGR(AI-EGR) and fuel-induced EGR(FI-EGR) methods. Our experimental results show that the $NO_x$ emission index($EI_{NOx}$) decreased with increasing EGR ratio. In the range needed to form a stable flame, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 29% when the EGR ratio was 20%, and the reduction rate for the AI-EGR method was approximately 28% with 25% of the EGR ratio. According to the flame structure based on numerical results, high temperature regions for the FI-EGR method were narrower and lower than those for the AI-EGR method at the same EGR ratio. Furthermore, based on the experimental results for swirl flames, the reduction rate of $EI_{NOx}$ for the FI-EGR method was approximately 49% with 15% of the EGR ratio, while the maximum reduction rate for AI-EGR method was approximately 45% with 25% of the EGR ratio. Consequently, we verified that the FI-EGR method was more effective than the AI-EGR method in reducing $NO_x$ emission for non-premixed flames with EGR. We expect that the results of this study will provide fundamental information relating to hybrid combustion systems, which can be used in the design of combustion systems in the future.

A Study on the Effect of Compression Ratio and EGR on the Partial Premixed Diesel Compressed Ignition Combustion Engine Applied with the Split Injection Method (2단 분사방식을 적용한 부분 예혼합 디젤압축착화연소엔진의 성능에 미치는 압축비 및 EGR의 영향)

  • Chung, Jae-Woo;Kang, Jung-Ho;Lee, Sung-Man;Kang, Woo;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-38
    • /
    • 2006
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. A new concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogenous charge compression ignition(HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. In addition, this study confirmed the possibility of securing optimum fuel economy emission reduction in the IMEP 8bar range(which could not be achieved with existing partially premixed combustion) through forced charging, exhaust gas recirculation(EGR), compression ratio change and application of DOC catalyst.

Numerical Investigation of Exhaust Gas Recirculation Effect under Boost Pressure Condition on Homogeneous Charge Compression Autoignition (HCCI엔진의 과급조건에서 EGR영향에 대한 수치해석적 연구)

  • Oh, Chung Hwan;Jamsran, Narankhuu;Lim, Ock Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.451-464
    • /
    • 2014
  • This study used numerical methods to investigates investigate the exhaust gas recirculation (EGR) effect under the condition of boost pressure condition on a homogeneous charge compression ignition (HCCI) combustion engine using numerical methods. The detailed chemical-kinetic mechanisms and thermodynamic parameters for n-heptane, iso-octane, and PRF50 from the Lawrence Livermore National Laboratory (LLNL) are were used for this study. The combustion phase affects the efficiency and power. To exclude these effects, this study decided to maintain a 50 burn point (CA50) at 5 CA after top dead center aTDC. The results showed that the EGR increased, but the low temperature heat release (LTHR), negative temperature coefficient (NTC), and high temperature heat release (HTHR) were weakened due by theto effect of the O2 reduction. The combined EGR and boost pressure enhanced the autoignition reactivity, Hhence, the LTHR, NTC, and HTHR were enhanced, and the heat-release rate was increased. also In addition, EGR decraeased the indicated mean effective pressure (IMEP), but the combined EGR and boost pressure increased the IMEP. As a results, combining the ed EGR and boost pressure was effective to at increase increasing the IMEP and maintaining the a low PRR.

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.