• Title/Summary/Keyword: 재순환 배기

Search Result 239, Processing Time 0.02 seconds

Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine (4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.

Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion (분사기 형상 변경을 통한 저온 디젤 연소의 배기 배출물 저감)

  • Jung, Yong-Jin;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.16-23
    • /
    • 2011
  • Low temperature combustion is one of the advanced combustion technology in an internal combustion engine to reduce soot and nitrogen oxides simultaneously. In present experiment three kinds of injector were used to investigate the influence of injection angle and number of nozzle holes on the low temperature combustion in a heavy duty diesel engine. Low temperature diesel combustion is realized from the exhaust gas recirculation rate of 60%. Indicated mean effective pressure of low temperature combustion corresponds to the 70% level of conventional diesel engine combustion. Reduction of hydrocarbon and carbon monoxide, which are produced in low temperature combustion because of the low combustion temperature and a deficit of oxygen, was achieved by using various injector configuration. The result of experiment with $100^{\circ}$ injection angle and 8 holes showed that reductions in hydrocarbon and carbon monoxide could be achieved 58% and 27% respectively maintaining the 7% increased indicated mean effective pressure in low temperature diesel combustion compared with conventional injector.

Nonlinear Static Model-based Feedforward Control Algorithm for the EGR and VGT Systems of Passenger Car Diesel Engines (승용디젤엔진의 EGR, VGT 시스템을 위한 비선형 정적 모델 기반 피드포워드 제어 알고리즘 설계)

  • Park, Inseok;Park, Yeongseop;Hong, Seungwoo;Chung, Jaesung;Sohn, Jeongwon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.135-146
    • /
    • 2013
  • This paper presents a feedforward control algorithm for the EGR and VGT systems of passenger car diesel engines. The air-to-fuel ratio and boost pressure are selected as control indicators and the positions of EGR valve and VGT vane are used as control inputs of the EGR and VGT controller. In order to compensate the non-linearity and coupled dynamics of the EGR and VGT systems, we have proposed a non-linear model-based feedforward control algorithm which is obtained from static model inversion approach. It is observed that the average modeling errors of the feedforward algorithm is about 2% using stationary engine experiment data of 225 operating conditions. Using a feedback controller including proportional-integral, the modeling error is compensated. Furthermore, it is validated that the proposed feedforward algorithm generates physically acceptable trajectories of the actuator and successfully tracks the desired values through engine experiments.

The Effect of Cetane Number on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 세탄가가 배기가스 특성에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • This study is to investigate the effect of the cetane number in ultra low sulfur diesel fuel on combustion characteristics and exhaust emissions at 1500 rpm and 2.6bar BMEP in low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low-temperature diesel combustion was achieved by adopting external high EGR rate with the strategic injection control without modification of engine components. Test fuels are ultra low sulfur diesel fuel (sulfur less than 12 ppm) with two cetane numbers (CN), i.e., CN30 and CN55. For the CN30 fuel, as a start of injection (SOI) timing is retarded, the duration of an ignition delay was decreased while still longer than $20^{\circ}CA$ for all the SOI timings. In the meanwhile, the CN55 fuel showed that an ignition delay was monotonically extended as an SOI timing is retarded but much shorter than that of the CN30 fuel. The duration of combustion for both fuels was increased as an SOI timing is retarded. For the SOI timing for the minimum BSFC, the CN30 produced nearly zero PM much less than the CN55, while keeping the level of NOx and the fuel consumption similar to the CN55 fuel. However, the CN30 produced more THC and CO than the CN55 fuel, which may come from the longer ignition delay of CN30 to make fuel and air over-mixed.

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

Effects of Bio-diesel blending rate on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with EGR rate (커먼레일식 디젤기관의 EGR율과 바이오디젤 혼합율에 따른 연소 및 배기 특성)

  • Yoon, Sam-Ki;Choi, Nag-Jung
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this study is to investigate the specific characteristics of combustion and exhaust emissions on a 4-cylinder common rail diesel engine as EGR rate and the rate of blended bio-diesel was altered. Bio-diesel fuel which is a sort of alternative fuels can be adapted to diesel engine directly without modifying. This study was performed to 2000rpm of engine speed with torque 30Nm while EGR rate and the rate of blended bio-diesel was changed. Decreasing combustion pressure and increasing the rate of heat were occurred when we had changed the EGR rate on the 20% of bio-diesel blended diesel fuel. The maximum pressure of combustion and the IMEP became higher as the EGR rate and the rate of blended bio-diesel were changed. Exhaust gas temperature was increased the higher rate of the blended bio-diesel under the fixed EGR rate. However, it went down as the EGR rate increased. The amounts of CO and Soot were reduced with increasing the rate of the blended bio-diesel without changing EGR rate and raised with increasing of the EGR rate. On the fixed EGR rate, NOx was increased along with growing the rate of the bio-diesel. On the other hand, it was decreased while EGR rate were going up.

Development of Large-sized Propane Engine for Emission Reduction of Construction Machinery (건설기계의 배출가스 저감을 위한 대형 프로판 전용 엔진 개발)

  • Yongrae Kim;Cheolwoong Park;Hyungjun Jang;Young Choi;Moonyong Jeong;Myunghoon Han;Donghoon Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.91-97
    • /
    • 2023
  • Aging construction machinery and vehicles with old diesel engines usually have a long life span, so they continue to emit harmful emissions. Therefore, replacing these older diesel engines with engines that meet the latest emisstion standard is expected to help improve air quality, and engines with propane fuels, which are easily available at construction sites, can be an appropriate alternative. In this study, a propane fueled engine was developed based on a 6.8-liter CNG engine, and technologies such as gas injectors, exhaust gas recirculation (EGR), and enhanced catalysts were applied. As a result, nitrogen oxides achieved half of the emission performance at the Stage-V level, the latest emission standard, while securing diesel engine output and torque in the same class.

An Exhaust Gas Study of HD Diesel Engine with the Electronic control EGR (전자제어 EGR을 사용한 대형디젤기관의 배출가스연구)

  • Park Kyi-yeol;Oh Yong-suk;Moon Byung-chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Modem after-treatment technology has been developed variously in order to decrease exhausted emission in diesel engine. However, it seems very difficult to comply with updated stringent emission standards. Specially, it has been many years that exhaust gas from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the electronic control EGR and the target for this research is heavy-duty turbo-diesel engine with EGR technology(High pressure route and low pressure route system).

A Study on the Residual Gas Fraction in Cylinder by the Adjustment of Variable Valve Timing with Volumetric Efficiency (체적효율을 고려한 가변밸브 개폐시기의 조정에 의한 실린더내 잔류가스량에 관한 연구)

  • 남정길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.82-88
    • /
    • 2001
  • The EGR is needed fur one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated. That is a reason why we consider using the internal EGR system. The internal EGR is a system which reduces NOx by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper, characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results, residual gas fraction and volumetric efficiency in cylinder by variable valve timing were visualized.

  • PDF

Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type (Spiral 구조 EGR Cooler의 열유동 특성 평가)

  • 허형석;원종필;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).