• Title/Summary/Keyword: 재생 플라스틱

Search Result 106, Processing Time 0.023 seconds

Carbon Dioxide-reducible Biodegradable Polymers (이산화탄소 저감형 생분해성 고분자)

  • Lee, Won-Ki
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.191-200
    • /
    • 2011
  • Natural polymers, biopolymers, and synthetic polymers based on renewable resources are the basis for the 21th portfolio of sustainable and eco-friendly plastics but high-volume consumable plastics continue to be dominated by nondegradable petroleum-based materials. Three factors have recently made biodegradable polymers economically attractive: (i) rising costs of petroleum production resulting from the depletion of the most easily accessible reserves, (ii) environmental and economic concerns associated with waste plastics, and (iii) emissions of carbon dioxide from preparation of petroleum-based materials. These pressures have driven commercial applications based on biodegradable polymers which are related to reduction of carbon dioxide in processing, such poly(hydroxy alkanoate) and poly (lactide). Since initial degradation of these polymers leads to catastrophic mechanical failure, it is necessary to control the rate of initial degradation for commercial applications. In this article, we have a critic review on the recent progress of polymer modification for the control of degradation.

A Study on the Physical Properties of a Compound Using the Crosslinking of Vinylized-mesoporous Silica and Regenerated Polyethylene (비닐화 실란이 도입된 메조포러스 실리카와 재생 폴리에틸렌의 가교결합을 이용한 컴파운드의 물성 연구)

  • Tae-Yoon Kim;Hyun-Ho Park;Chang-Seop Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.420-428
    • /
    • 2023
  • Crosslinking was introduced into vinylized-mesoporous silica and recycled polyethylene. By introducing a vinyl group into the mesoporous silica, it becomes a material capable of inducing cross-linking with non-polar polyethylene. By synthesizing vinylized-mesoporous silica and inducing crosslinking with recycled polyethylene, a recycled polyethylene composite with improved physical properties than existing recycled polyethylene was synthesized. In addition, even when a small amount is added according to the grade of recycled polyethylene using vinylized-mesoporous silica, the crosslinking reaction proceeds and all physical properties are improved. Four types of vinylized-mesoporous silica were synthesized, and the shape, microstructure, and functional groups were analyzed by TEM, BET, FT-IR, and XRD. Using vinylized-mesoporous silica, three types of compounds were blended by crosslinking reaction with recycled polyethylene. In order to confirm the presence or absence of crosslinking, analysis was performed using XPS and FT-IR, and physical properties such as tensile strength, elongation, flexural strength, and flexural modulus were confirmed using a universal testing machine. As a result, by applying vinylized-mesoporous silica to recycled polyethylene in various grades, the weak physical properties of existing recycled polyethylene were overcome. By applying the vinylized-mesoporous silica, recycled polyethylene composite material that overcomes the weak physical properties to the normal polyethylene, it shows the optimal physical property index that can be used commercially. Therefore, it is expected that it can potentially increase the use of recycled polyethylene and recycle resources.

Study on the Correlation between Air Emission Gas and Alternative Fuels Used in Cement Sintering Process (시멘트 소성공정에 사용된 대체연료와 대기배출가스간 상관관계 연구)

  • Choi, Jaewon;Baek, Ju-Ik;Kwon, Sang-Jin;Won, Pil-Sung;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.286-293
    • /
    • 2020
  • In this study, we tried to verify the correlation of the amount of combustible industrial by-products, household waste used as fuels on cement sintering process and the amount of NOx, and CO, harmful components in the exhaust gas. The analysis uses coal as natural fuel, soft plastics (plastics with properties that tend to be scattered by wind, such as vinyls), hard plastics (plastics with properties that are not scattered by wind, such as PETs, wate rubbers), and reclaimed oils as alternative fuels. Utilizing the response surface analysis (RSM) technique using the process data of 2019, such as the fuel input and combustion temperature of a domestic A cement manufacturer's sintering facilities as independent variables, and the NOx, and CO emissions to the stack as dependent variables. Correlation was analyzed. As a result, it was confirmed that the impact on the emission material differs for each waste. In particular, it was analyzed that the hard plastics increase the CO emission but have an excellent effect of reducing NOx.

Mechanical Characteristics of Recycled PET Polymer Concrete with Demolished Concrete Aggregates (PET와 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Lee Du-Wha;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.335-342
    • /
    • 2005
  • In this paper, fundamental properties of Polymer Concrete(PC), made from unsaturated polyester resin based on recycled PET and recycled aggregate were investigated. Mechanical properties include strength, modulus of elasticity, and chemical resistance. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio we, first, the strength of Polymer Concrete made with resin based on recycled PET and recycled aggregate increases with resin contents relatively, however beyond a certain resin contents the strength does not change appreciably, Second, the relationship between the compressive strength and recycled aggregate ratio at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled aggregate ratio. Third, the effect of acid resistance at resin $9\%$ was found to be nearly unaffected by HCI, whereas the PC with $100\%$ recycled aggregate showed poor acid resistance. Unlike acid, alkali nearly does not seem to attack the RPC as is evident from the weight change and compressive strength. And last, In case of stress-strain curve of polymer concrete with $100\%$ of natural aggregate and $100\%$ recycled aggregate it is observed the exceptional behavior resulting in different failure mechanisms of the material under compression.

A Research on the Design Techniques for Underwater Acoustic Basin (무향 수조 설계기법 연구)

  • 임용곤;이종무;배상현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.212-221
    • /
    • 2001
  • This paper deals with the design techniques for underwater acoustic basin. An underwater acoustic basin is needed for test and calibration of acoustic sensors, acoustic digital communication system, acoustic measurement system, and underwater image data telemetry system. KRISO(Korea Research Institute of Ships and Ocean Engineering) have planned the construction of an underwater acoustic tank from 1999 to 2001 through internal project. We studied about absorbtion characteristics of a porous re-cycled rubber which is selected as a absorption materials and designed absorption plate with wedge shape. The simulation of reflection analysis along the wedge angle for wedged type plate was presented.

  • PDF

A Research on the Design Techniques for Underwater Acoustic Basin (무향 수조 설계기법 연구)

  • 임용곤;이종무;박종원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.371-377
    • /
    • 2000
  • This paper deals with the design techniques for underwater acoustic basin. An underwater acoustic basin is needed for test and calibration of acoustic sensors, acoustic digital communication system, acoustic measurement system, and underwater image data telemetry system. KRISO(Korea Research Institute of Ships and Ocean Engineering) have planned the construction of an underwater acoustic tank from 1999 to 2001 through internal project. We studied about absorbtion characteristics of a porous re-cycled rubber which is selected as a absorption materials and designed absorption plate with wedge shape. The simulation of reflection analysis along the wedge angle for wedged type plate was presented.

  • PDF

A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste (혼합폐플라스틱 열분해 왁스오일의 고급화 연구)

  • Lee, Kyong-Hwan;Nam, Ki-Yun;Song, Kwang-Sup;Kim, Geug-Tae;Choi, Jeong-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

Effects of Thermal Dispersion Damage on the Pyrolysis and Reactor Relarionship Using Comutational Fluids Dynamics (전산유체역학을 활용한 폐플라스틱열분해 반응기의 기체분산판에 대한 유동해석)

  • Jongil, Han;SungSoo, Park;InJea, Kim;Kwangho, Na
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2023
  • The Computational Fluid Dynamics (CFD) model is a method of studying the flow phenomenon of fluid using a computer and finding partial differential equations that dominate processes such as heat dispersion through numerical analysis. Through CFD, a lot of information about flow disorders such as speed, pressure, density, and concentration can be obtained, and it is used in various fields from energy and aircraft design to weather prediction and environmental modeling. The simulation used for fluid analysis in this study utilized Gexcon's (FLACS) CODE, such as Norway, through overseas journals, for the accuracy of the analysis results through many experiments. It was analyzed that a technology for treating two or more catalysts with physical properties under low-temperature atmospheric pressure conditions could not be found in the prior art. Therefore, it would be desirable to establish a continuous plan by reinforcing data that can prove the effectiveness of producing efficient synthetic oil (renewable oil) through the application that pyrolysis under low-temperature and atmospheric pressure conditions.

A Study on the Environment Assessment of Waste Polyethylene Terephthalate (PET) by LCA (LCA기법을 이용한 PET의 환경성평가에 관한 연구)

  • Park, Chan-Hyuk;Chung, Jae-Chun;Choi, Suk-Soon;Kim, Sung-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • In this study, life cycle assessment(LCA) technique was employed to evaluate the environmental impact of material recycling of polyethylene terephthalate(PET) bottle. Life cycle inventory was established based on the data collected from recycling companies in Korea. Simapro 5.0 LCA software and Eco-indicator 95 index were used for the analysis. The biggest impact by the material recycling of PET bottle on the environmental category was the global warming. It is because melting and production of the recycled PET product consume a significant amount of electricity and energy. In the environmental pollution discharge, $CO_2$ emission was the highest, followed by NOx. This is probably due to the use of diesel and gasoline in the consumption of electricity and transportation. All the environmental impact showed (-) value except the ozone layer depletion, which means that the material recycling of PET bottle is environmentally fair. The use of recycled PET product greatly reduced the environmental impact.

  • PDF

Electrical and structural properties of back reflecting layer with AZO-Ag bilayer structure on a stainless steel substrate for thin film Si based solar cell applications (Flexible 박막 Si태양전지 응용을 위한 SUS기판 위의 AZO-Ag 이중구조 배면전극의 전기/구조적 특성)

  • Hong, ChangWoo;Choi, YoungSung;Park, Jaecheol;Lee, JongHo;Kim, TaeWon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.125.1-125.1
    • /
    • 2011
  • 빛 에너지를 전기에너지로 변환하는 발전소자인 태양전지는 청정 재생 에너지원으로 최근 Si 박막 태양전지의 고 효율화를 위해 여러 기술적인 면에서 개발되어지고 있다. 현재 박막형 태양전지는 실리콘계가 주류를 이루고 있으며, 유리 혹은 유연성기판(금속 or 고분자)에 비정질 실리콘 박막을 형성시킨 태양전지와 실리콘웨이퍼의 양면에 태양전지를 형성함으로써 효율을 극대화시킨 이종접합태양전지 등이 연구되고 있다. 특히 flexible 태양전지는 hard 기판에 비해 비교적 저가인 플라스틱 필름과 금속 foil을 기판으로 이용함으로서 저가화가 용이하며, 가볍고 유연성을 갖추고 있어 휴대와 시공에 있어 매우 우수한 장점을 가지고 있다. 본 연구에서는 flexible 기판(stainless steel)을 이용하여 태양전지 내 반사막 층이 미치는 영향을 알아보기 위하여 AZO/Ag 이중구조 박막의 특성을 연구하였다. RF magnetron sputtering system을 이용하였으며, 상온에서 Ag/AZO 이중구조 박막을 제조하였다. stainless steel 기판 위에 Ag층을 25nm 두께로 증착하였으며 연속공정으로 AZO 박막을 100~500nm의 두께경사를 가지도록 성장시켰다. 이 때의 AZO/Ag 이중구조 박막의 표면 morphology는 AFM 분석결과 7nm~3nm의 값을 나타내었으며, AZO 박막의 두께가 증가할수록 rms 값이 감소하는 경향을 보여주었다. 본 발표에서는 flexible 기판 상에 성장된 AZO/Ag 이중구조 박막의 전기적, 광학적 특성 등에 관하여 추가적으로 토론한 후 태양전지 효율 중 흡수층 내 반사막 층이 미치는 역할을 알아보겠다.

  • PDF