• Title/Summary/Keyword: 재생에너지 시스템

Search Result 1,388, Processing Time 0.03 seconds

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Development of fault diagnostic system for mass unbalance and aerodynamic asymmetry of wind turbine system by using GH-Bladed (GH-Bladed를 이용한 풍력발전기의 질량 불평형 및 공력 비대칭 고장진단 시스템 개발)

  • Kim, Se-Yoon;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.96-101
    • /
    • 2014
  • Wind power is the fastest growing renewable energy source in the world and it is expected to remain so for some times. Recently, there is a constant need for the reduction of Operational and Maintenance(O&M) costs of Wind Energy Conversion Systems(WECS). The most efficient way of reducing O&M cost would be to utilize CMS(Condition Monitoring System) of WECS. CMS allows for early detection of the deterioration of the wind generator's health, facilitating a proactive action, minimizing downtime, and finally maximizing productivity. There are two types of faults such as mass unbalance and aerodynamic asymmetry which are related to wind turbine's rotor faults. Generally, these faults tend to generate various vibrations. Therefore, in this work a simple fault detection algorithm based on spectrums of vibration signals and simple max-min decision logic is proposed. Furthermore, in order to verify its feasibility, several simulation studies are carried out by using GH-bladed software.

Regeneration of ATP through an Activated Glycolytic Pathway in a Cell-free Extract and its Application for Protein Expression (해당과정의 활성화를 통한 무세포 단백질 발현 시스템에서의 ATP 재생)

  • Kim Dong Myung;Keum Jeong Won;Kim Tae Wan;Oh In Seok;Choi Cha-yong
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.467-470
    • /
    • 2004
  • We have investigated the key parameters affecting ATP regeneration in a cell-free protein synthesis system derived from Escherichia coli. When glucose-6-phosphate was used as an energy source, the efficiency of ATP regeneration sharply responded to pH change of reaction mixture. In addition, both productivity and reproducibility of protein synthesis was substantially enhanced by introducing appropriate amount of NAD into the reaction mixture. As a result, through the activation of glycolytic pathway under an optimal pH, the batch cell-free system produced over $300\;{\mu}g$ of protein in a 1 mL reaction.

A Case Study on the Architectural Planning of Floating Hotel (플로팅 호텔의 건축계획에 대한 사례연구)

  • Moon, Chang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.515-522
    • /
    • 2011
  • This research is intended to suggest some reference materials for the future planning of floating hotel, by reviewing the concept of floating hotel and analyzing the realized and planned ones through the search of related documents and homepages. Floating hotel can be defined as a building for living/recreation/work/entertainment with floating system on water, but without navigation tool. In terms of sequence, the River Kawi Jungle Rafts Resort was built in 1976, Four Seasons Hotel in 1988, and Salt & Sill in 2008. Floating hotels are various in scale(height) and size(room numbers), and have basic, cultural, health & marina facilities. Architectural characteristics of sample facilities can be summarized as self-supporting of the facilities, environmentally friendly architectural planning, utilization of renewable energy, introduction of new plastic composite material, and provision of same view from all bedrooms by rotating the building.

The Wave Power Generator on Small Ship for Charging Engine Start-Up Battery (엔진 시동용 소형선 탑재형 파력 발전 시스템)

  • Kisoo, Ryu;Sungjin, Kang;Byeongseok, Yu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • Efforts to reduce carbon dioxide(CO2) emissions are being carried out due to climate environmental problems. Eco-friendly ships are also being developed, and various energy saving measures have been developed and applied. In ships, researches have been conducted in various fields such as electric propulsion system and energy saving devices. In addition, the development of ships using various renewable energy, such as kite using wind power and wind power generation, has been carried out. This paper proposes a plan to use renewable energy for ships by applying wave generators to small ships. In 2016, 130 small domestic ships drifted by sea due to discharge of starting storage batteries, and discharge cases accounted for the largest portion of the causes of domestic ship accidents. This is due to the excessive use of storage batteries for starting the main engine by departing in a weak storage battery state for small ships. Accordingly, two type wave power generators - opened flow wave power generator and enclosed vibrator type wave power generator - are developed for charging a starting storage battery when the ships are stationary at sea or port. Opened flow wave power generator utilizes the flow of fluid in the ship by using wave induced ship motion. Enclosed vibrator type wave power generator utilizes the pendulum kinetic energy located in a ship due to wave induced ship motion.

Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network (고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류)

  • Senfeng Cen;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.115-126
    • /
    • 2023
  • Due to the fluctuating random and periodical nature of renewable energy generation power quality disturbances occurred more frequently in power generation transformation transmission and distribution. Various power quality disturbances may lead to equipment damage or even power outages. Therefore it is essential to detect and classify different power quality disturbances in real time automatically. The traditional PQD identification method consists of three steps: feature extraction feature selection and classification. However, the handcrafted features are imprecise in the feature selection stage, resulting in low classification accuracy. This paper proposes a deep neural architecture based on Convolution Neural Network and Long Short Term Memory combining the time and frequency domain features to recognize 16 types of Power Quality signals. The frequency-domain data were obtained from the Fast Fourier Transform which could efficiently extract the frequency-domain features. The performance in synthetic data and real 6kV power system data indicate that our proposed method generalizes well compared with other deep learning methods.

Floating Photovoltaic Plant Location Analysis using GIS (GIS를 활용한 수상 태양광 발전소 입지 분석)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Global consumption of fossil fuels continues to increase. As developing countries use fossil fuel as much as the existing fossil fuel using countries, the total amount of fossil fuel consumed has risen. The finite fossil energy depletion insecurity have become serious. In addition, fossil energy is caused by environmental pollution, economic and social problems remain in assignments that need to be addressed. Although solar power is clean and has many benefits, there are several problems in the process of installing a solar power plant. To solve these problems, floating photovoltaic plants has emerged as an alternative. This floating photovoltaic plants location analysis has not been made yet. In this study, the conditions of the floating photovoltaic plants location is analyzed with the Analytic Hierarchy Process using the terrain and climate factors. The score is assigned to the attribute information of each factor by the classification table. After multiplied by the weight the result is analyzed by visualization of the score. As the result, the score of the northen part of Gyeongsangbuk-do province is higher than the southern part of Gyeongsangbuk-do province. Especially Andongho lake in Andong City and the reservoir in Yeongyang-Gun are extracted as the optimal location. The score of the river boundary is low not the center of the river stream. It is expected that this study would be a more accurate floating solar power plant location analysis.

Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column (진동수주형 파력발전구조물의 최적형상에 대한 검토)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Baek, Dong-Jin;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.345-357
    • /
    • 2011
  • Recently, as part of diversifying energy sources and earth environmental issues, technology development of new renewable energy using wave energy is actively promoted and commercialized around Europe and Japan etc. In particular, OWC(Oscillating Water Column) wave power generation system using air flow induced by vertical movement of the water surface by waves in an air-chamber within caisson is known as the most efficient wave energy absorption device and therefore, is one of the wave power generation apparatus the closest to commercialization. This study examines air flow velocity, which operates turbine(Wells turbine) directly in oscillating water column type wave power generation structure from two-and three-dimensional numerical experiments and discusses optimal shape of oscillating water column type wave power generation structure by estimating the maximum flow rate of air according to change in shape. The three-dimensional numerical wave flume was applied in interpretation for this study which is the model for the immiscible two-phase flow based on the Navier-Stokes Equation. From this, it turned out that size of optimal shape appears differently according to the incident wave period and air flow is maximized at the period where minimum reflection ratio occurs.

A Study on the Supply Methods of Heating Energy in Rural Regions by Using Wood Chips -Focusing on the Production Method of Wood Chips for Fuel though Natural Drying Method- (목재칩을 이용한 농촌지역 난방에너지 공급 방법 연구 -자연건조 방식을 통한 연료용 목재칩 생산방법을 중심으로-)

  • An, Byeong-IL;Ko, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.401-408
    • /
    • 2021
  • Supplies of wood chips for fuel tend to increase owing to energy decentralization and new renewable energy policies. This study suggests a technical method that is necessary in order to supply heating energy to rural regions by using wood chips for fuel. Therefore, this study investigates the effects of natural drying methods for eight months by installing a drying facility with natural ventilation capable of loading 10 tons of wood chips, and which derive a natural drying method based on this to meet the quality standards of wood chips for fuel. The study results confirm that it is possible to produce wood chips for high-quality fuel with water content at 20% or less after around 90 days of drying, provided that a drying facility with natural ventilation is equipped with materials that can be procured easily in rural regions. It is also possible to block the proliferation and fermentation of molds that affect the quality of wood chips, provided that intake and exhaust systems adhering to standards are equipped.

Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle (유기랭킨사이클로 구동되는 증기압축냉동사이클의 엑서지 해석)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1137-1145
    • /
    • 2013
  • In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.