• Title/Summary/Keyword: 재료시험

Search Result 4,145, Processing Time 0.035 seconds

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.

Comparison of Splices between Bolts and Welding Spliced PHC Piles (볼트 수직이음 PHC말뚝와 용접이음 PHC말뚝의 이음부 거동 비교)

  • Kim, Myunghak;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.93-103
    • /
    • 2018
  • Behaviors of splices between bolts and welding spliced PHC piles using the tensile strength test were analyzed. The bolts spliced PHC piles, which were tightened over $200N{\cdot}m$ tightening torque, showed straight V shaped line at splices at the lowest 20 N load. Both sides of PHC piles stayed straight, so the full section of bolts spliced piles did not show the unifying behavior, which was the most important performance requirement as pile. Other bolts spliced PHC piles, tightened with $20N{\cdot}m$ loosening torque, also showed the same straight V shaped line at splices for each step of loading. The full section of bolts spliced piles did not return to the initial position after each step of unloading and did not show the elastic material behavior. The splices quality of bolts spliced piles is much lower than that of welding spliced piles with respect to displacement of splices during each step of loadings, residual displacements during each step of unloadings, and failure loads. Results showed that bolts spliced PHC piles, tightened with both over $200N{\cdot}m$ and as low as $20N{\cdot}m$ torque, fell short of performance requirements of spliced PHC pile.

A Study on the Electrical Conductivity and Electromagnetic Shielding of High Performance Fiber Reinforced Cementitious Composites(HPFRCC) (고성능 시멘트 복합체의 전기전도도 및 전자파 특성 시험 평가)

  • Lee, Nam-Kon;Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study investigated electrical conductivity, electromagnetic shielding effectiveness, and mechanical property to improve electromagnetic shielding performance of high performance fiber reinforced cementitious composites (HPFRCC). Steel fiber, steel slag and carbon black as a conductive material were incorporated into the HPFRCC mixes. In addition, 2% CNT solution which was produced by dispersing multi-wall carbon nanotube (MWCNT) into water was used as a conductive material. In the test results, electrical conductivity of HPFRCC specimens was very low except for the specimen incorporating 1% carbon black. Micro structure of cement matrix was changed as the curing time increased, which negatively affected the conductive network of HPFRCC. In case of HC1 specimen showing a conductive network (0.083 S/cm), the electrical conductivity of the specimen after being dried at $60^{\circ}C$ for 72 hours to exclude the effect of water on electrical conductivity was significantly reduced to 0.0003 S/cm. The most important parameter of electromagnetic shielding effect was found to be a steel fiber while the effect of carbon black and steel slag was very few. The correlation between electrical conductivity and electromagnetic shielding effect does not seem to be clear.

Mechanical Properties for Processing Parameters of Thermoplastic Composite Using Automated Fiber Placement (자동 섬유 적층(AFP)을 활용한 열가소성 복합재의 공정 변수에 따른 기계적 물성 평가)

  • Sung, Jung-Won;Choe, Hyeon-Seok;Kwon, Bo-Seong;Oh, Se-Woon;Lee, Sang-Min;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.229-236
    • /
    • 2019
  • In this study, the effects of the additional processing parameters on the mechanical properties of thermoplastic composites fabricated with automated fiber placement (AFP) were evaluated. Annealing and vacuum bag only processes were then performed on the manufactured thermoplastic composites, respectively. For verification, the crystallinity was measured by differential scanning calorimetry (DSC), confirming the variation of semi-crystalline thermoplastic composite according to the process conditions. The void content of thermoplastic composites was evaluated by matrix digestion method while microscopic examination confirmed the porosity distribution. The interlaminar shear strength test was conducted for three different process parameters (VBO, annealing, and no treatment). A comparison of the three tested strengths was made, revealing that the porosity value had larger effect on the mechanical properties of the thermoplastic composite compared to the degree of crystallinity. Additionally, when thermoplastic composite melted up, the pores were continuously removed under vacuum process; the removal of the pores resulted in an increase of the interlaminar shear strength.

An Experimental Study on Ground Reinforcement Effect of Concrete and Expansion Mat for Prevention of Buried Pipe Damage (지중매설관 손상 방지를 위한 콘크리트매트와 팽창매트의 지반보강효과에 관한 실험적 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Yuu, Jungjo;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.91-101
    • /
    • 2019
  • Recently, small-scale excavation like ground cavity restoration and buried pipe replacement works are being carried out in urban area, in order to improve living convenience. This paper describes experiment results on the ground reinforcement method that can reduce the buried pipe damage, when the differential settlement occurred due to poor compaction of ground below the buried pipe. Plate load tests were conducted to evaluate a reinforcement effect of ground using concrete mat and expansion mat in the ground below the buried pipe. The results showed that the stress reduction ratio by concrete mat and expansion mat according to the surcharge load was about 46%~48% and 39%~42%, respectively. Therefore, the differential settlement of the buried pipe and the ground deformation below the buried pipes were reduced by the reinforcement effect of the concrete mat and expansion mat. This means that it is possible to prevent a buried pipe damage due to underground cavity and ground subsidence, if concrete mat and expansion mat are reinforced in the ground below the buried pipe or on the ground between the buried pipes.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

An Experimental Study on the Evaluation of EMP Shielding Performance of Concrete Applied with ATMSM Using Zn-Al Alloy Wire (Zn-Al 합금 선재를 이용한 금속용사 공법 적용 콘크리트의 전자파 차폐 성능 평가에 관한 실험적 연구)

  • Choi, Hyun-Jun;Park, Jin-Ho;Min, Tae-Beom;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.209-217
    • /
    • 2019
  • EMP (Electromagnetic Pulse) usually means High Power Electromagnetic Wave (HPEM). In the case of the shielding plate against the EMP, there is a possibility of deterioration of the electromagnetic wave shielding performance due to the skill of the constructor, bad construction, deformation of the shielding plate at the connection portion (joint portion). The inefficient use of space due to the separation distance is also pointed out as a problem. Therefore, this study aims to derive the optimum electromagnetic shielding condition by applying ATMSM to concrete as a part of securing electromagnetic wave shielding performance with reflection loss against concrete wall. Experimental parameters included concrete wall thickness and application of Zn-Al ATMSM. For the concrete wall, the wall thickness was 100 to 300mm, which is generally applied, and experimental parameters were set for the application of Zn-Al metal spraying method to evaluate electromagnetic shielding performance. Experimental results showed that as the thickness increases, the electromagnetic shielding performance increases due to the increase of absorption loss. In addition, after the application of Zn-Al ATMSM, the average shielding performance increased by 56.68 dB on average, which is considered to be increased by the reflection loss of the ATMSM. In addition, it is considered that the shielding performance will be better than that when the conductive mixed material and the ATMSM are simultaneously applied.

Effect of Saliva Contamination Stage and Different Decontamination Procedures on Bonding Strength of Resin-Modified Glass Ionomer (레진강화형 글라스아이오노머의 초기 결합력과 타액오염 제거의 상관관계)

  • Go, Hanho;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.158-164
    • /
    • 2019
  • The purpose of this study was to compare the bond strength of resin-modified glass ionomer (RMGI) to dentin with saliva contamination at different stages and using different decontamination procedures. Extracted human permanent molars were embedded onto acrylic resin with the dentin surface exposed. Group I was a control group that was conditioned with polyacrylic acid (PAA). Groups II and III were contaminated with saliva before PAA conditioning and Groups IV, V, and VI were contaminated with saliva after PAA conditioning. After saliva contamination, Groups II and IV were dried, Groups III and V were rinsed and dried, and Group VI was additionally conditioned with PAA. After surface treatment, the dentin specimens were filled with RMGI. Group I showed significantly higher bond strength than the other groups. Group VI showed a significantly higher bond strength than the other saliva contaminated groups. However, there were no significant differences in the failure mode between the different groups. Saliva contamination impaired the bond strength of RMGI to dentin, regardless of when the saliva contamination occurred. Decontamination with washing and drying could not improve the shear bond strength of RMGIC. When saliva contamination occurred after PAA conditioning, additional PAA conditioning improved the shear bond strength.

A Study on the Atmospheric Pressure Control of the VARTM Process for Increasing the Fiber Volume Fraction and Reducing Void (섬유부피분율 증가와 공극 감소를 위한 VARTM 공정의 대기압 제어에 관한 연구)

  • Kwak, Seong-Hun;Kim, Tae-Jun;Tak, Yun-Hak;Kwon, Sung-Il;Lee, Jea-Hyun;Kim, Sang-Yong;Lee, Jong-Cheon
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • VARTM (Vacuum-assisted resin transfer molding) process is a low-cost process technology and affiliated with OoA (Out of Autoclave). Besides, it has been widely used in various fields. However, because of its lower quality than the autoclave process, it isn't easy to apply the VARTM process to the aerospace industry, which requires high reliability. The main problem of the VARTM process is the loss of mechanical properties due to the low fiber volume fraction and high void content in comparison to the autoclave. Therefore, many researchers have studied to reduce void and increase fiber volume fraction. This study examines whether the method of controlling atmospheric pressure could increase the fiber volume fraction and reduce void during the resin impregnation process. Reliability evaluation was confirmed by compressive strength test, fiber volume fraction analysis, and optical microscopy. As a result, it was confirmed that increasing the atmospheric pressure step by step in the VARTM process of impregnating the preform with resin effectively increases the fiber volume fraction and reduces void.