• Title/Summary/Keyword: 재관류 손상

Search Result 104, Processing Time 0.032 seconds

Attenuation of Ischemia-Reperfusion Injury by Antioxidant Vitamins in a Pig Model of Renal Auto-Transplantation (돼지의 신장 자가이식에서 Ascorbic Acid와 Alpha-tocoperol 의한 허혈 및 재관류 손상의 감소)

  • Kim, Myung-Jin;Lee, Jae-Yon;Cho, Sung-Whan;Park, Chang-Sik;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • This study was to determine the effects of ascorbic acid and alpha-tocopherol on the attenuation of an ischemia-reperfusion injury (IRI) after renal auto-transplantation in a pig model. In the treatment group, three pigs were subjected to a renal auto-transplantation followed by the administration of ascorbic acid and alpha-tocopherol and the flushing of ascorbic acid plus hepa-saline solution. Otherwise, the control group used only flushing of hepa-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values on the day before surgery and day 1, 3, 5 and 7 after surgery. The kidneys were taken for histopathological evaluation following euthanasia on day 14 after surgery. Serum creatinine and BUN values showed a significantly difference between control and treatment group on day 1, 3 and 5 (P<0.05). In histopathologic findings, treatment group showed less damage than that of the control group on the basis of renal tubular damage. As a result, this study suggests that the exogenous ascorbic acid and alpha-tocopherol pretreatment therapy with ascorbic acid irrigation-aspiration has a role of attenuation of renal I/R injury and recovery of renal function in a pig transplantation model.

Attenuation of Renal Ischemia-Reperfusion Injury by Antioxidant Vitamins in Pigs (돼지의 신장에서 Antioxidant Vitamins에 의한 허혈 및 재관류 손상의 감소에 관한 연구)

  • Kim, Myung-Jin;Lee, Soo-Jin;Park, Chang-Sik;Son, Hwa-Young;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.94-98
    • /
    • 2007
  • This study was to investigate the effects of ascorbic acid and alpha-tocopherol on the attenuation of renal ischemia-reperfusion (IR) injury in pigs. Ten pigs were subjected to 60 minutes of warm unilateral renal ischemia followed by removal of contralateral kidney and then divided into two groups. Treatment group was performed ascorbic acid and alpha-tocopherol pretreatment 2 days before operation and ascorbic acid with heparin-saline solution irrigation-aspiration. Otherwise, control group used only irrigation-aspiration of heparin-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values, antioxidant superoxide dismutase (SOD) at pre, day 1, day 3, day 7 and day 14. The kidneys were taken for histopathologic evaluation after euthanasia on postoperative day 14. The levels of BUN were significantly increased in the control group on day 1, day 3 and day 7 (P<0.05). And the level of creatinine was significantly increased in the control group on day 3 (p<0.05). Activity of antioxidant enzymes in plasma revealed significant difference (p<0.05) between control and treatment group at day 14. In histopathologic findings, treatment group was showed less damage than that of control group on the basis of renal tubular damage. It was concluded that ascorbic acid and alpha-tocopherol attenuated renal I/R injury in the pigs.

Arachidonate-induced Oxygen Radical Production and Cellular Damage in Ischemic-Reperfused Heart of Rat (허혈-재관류 적출심장에서 Arachidonic Acid에 의한 산소라디칼 생성 및 심근손상)

  • Lee, Yun-Song;Kim, Yong-Sik;Park, Seong-Ho;Myung, Ho-Jin;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.109-118
    • /
    • 1991
  • The present study was conducted to assess the possible contribution of arachidonic acid to generation of reactive oxygen metabolites and myocardial damage in ischemic-reperfused heart. Langendorff preparations of isolated rat heart were made ischemic by hypoperfusion (0.5 ml/min) for 45 min, and then followed by normal oxygenated reperfusion (7 ml/min). The generation of superoxide anion was estimated by measuring the SOD-inhibitable ferricytochrome C reduction. The myocardial cellular damage was observed by measuring LDH released into the coronary effluent. Oxygenated reperfusion following a period of ischemia produced superoxide anion, which was inhibited by both indomethacin (60 nmole/ml) and ibuprofen $(30\;{\mu}g/ml)$. Sodium arachidonate $(10^{-7}-10^{-2}{\mu}g/ml)$ administered during the period of oxygenated reperfusion stimulated superoxide anion production dose-dependently. The rate of arachidonate-induced superoxide generation was markedly inhibited by indomethacin, a cyclooxygenase inhibitor; nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, and by eicosatetraynoic acid (ETYA), a substrate inhibitor of arachidonic acid metabolism. The release of LDH was increased by Na arachidonate and was inhibited by superoxide dismutase. The release of LDH induced by arachidonic acid was also inhibited by indomethacin, NDGA and ETYA. In conclusion, the present result suggests that arachidonic acid metabolism is involved in the production of reactive oxygen metabolite and plays a contributory role in the genesis of reperfusion injuy of myocardium.

  • PDF

The Experimental Study for Myocardial Preservation Effect of Ischemic Preconditioning (허혈성 전조건화 유발이 심근보호에 미치는 영향에 관한 실험적 연구)

  • 이종국;박일환;이상헌
    • Journal of Chest Surgery
    • /
    • v.37 no.2
    • /
    • pp.119-130
    • /
    • 2004
  • Decrease in cardiac function after open heart surgery is due to an ischemia induced myocardial damage during surgery, and ischemic preconditioning, a condition in which the myocardial damage does not accumulate after repeated episodes of ischemia but protects itself from damage after prolonged ischemia due to myocytes tolerating the ischemia, is known to diminish myocardial damage, which also helps the recovery of myocardium after reperfusion, and decreases incidences of arrythmia. Our study is performed to display the ischemic preconditioning and show the myocardial protective effect by applying cardioplegic solution to the heart removed from rat. Material and Method: Sprague-Dawley male rats were used, They were fixed on a modified isolated working heart model after cannulation. The reperfusion process was according to non-working and working heart methods and the working method was executed for 20 minutes in which the heart rate, aortic pressure, aortic flow and coronary flow were measured and recorded. The control group is the group which the extracted heart was fixed on the isolated working heart model, recovered by reperfusion 60 minutes after infusion and preserved in the cardioplegic solution 20 minutes after the working heart perfusion and aortic cross clamp, The thesis groups were divided into group I, which ischemic hearts that were hypoxia induced were perfused by cardioplegic solution and preserved for 60 minutes; group II, the cardioplegic solution was infused 45 seconds (II-1), 1 minutes (II-2), 3 minutes (II-3), after the ischemia induction, 20 minutes after working heart perfusion and aortic cross clamp; and group III, hearts were executed on working heart perfusion for 20 minutes and aortic cross clamp was performed for 45 seconds (III-1), 1minute (III-2), 3 minutes (III-3), reperfused for 2 minutes to recover the heart, and then aortic cross clamping was repeated for reperfusion, all the groups were compared based on hemodynamic performance after reperfusion of the heart after preservation for 60 minutes. Result: The recovery time until spontaneous heart beat was longer in groups I, II-3, III-2 and III-3 to control group (p<0.01). Group III-1 (p<0.05) had better results in terms of recovery in number of heart rates compared to control group, and recovered better compared to II-1 (p<0.05). The recovery of aortic blood pressure favored group III-1 (p<0.05) and had better outcomes compared with II-1 (p<0.01). Group III-1 also showed best results in terms of cardiac output (p<0.05) and group III-2 was better compared to II-2 (p<0.05). Group I (p<0.01) and II-3 (p<0.05) showed more cardiac edema than control group. Conclusion: When the effects of other organs are dismissed, protecting the heart by infusion of cardioplegic solution after enforcing ischemia for a short period of time before the onset of abnormal heart beats for preconditioning has a better recovery effect in the cardioplegic group with preconditioning compared to the cardioplegic solution itself. we believe that further study is needed to find a more effective method of preconditioning.

Protective Effect of Nitroglycerin on the Ischemia-Reperfusion Model of the Isolated Rat Lung (흰쥐의 분리 폐장 관류 모델에서 Nitroglycerin의 폐장 보존 효과)

  • Jheon, Sang-Hoon;Lee, Sub;Lee, Jong-Hoon;Son, Bok-Kyoung;Cho, Gong-Rae;Chung, Jin-Yong;Cho, Soung-Kyung;Kim, Bong-Il;Lee, Young-Man;Choh, Joong-Haeng
    • Journal of Chest Surgery
    • /
    • v.36 no.12
    • /
    • pp.894-903
    • /
    • 2003
  • Protection against ischemia-reperfusion injury is crucial for successful transplantation of the lung. It has been known that nitric oxide has many favorable effects on the donor lungs but at the same time, has some potential side effects of cytotoxicity. In this regards, we investigated whether the administration of nitroglycerin could decrease ischemia-reperfusion injury in isolated rat lung reperfusion model for the confirmation of the effect of nitroglycerin, a donor of nitric oxide, on lung transplantation. Material and Method: 35 Sprague-Dawley species male white rats were used for this experiment. For nitroglycerin group (n=18), nitroglycerin was administered intravenously followed by mixed in flushing solution for preservation. As a control group (n=17), we used the same amount of normal saline. To evaluate the effect of nitroglycerin on the lung, heart-lung block was obtained, weighed and stored in University of Wisconsin Solution at 1$0^{\circ}C$ for 24 hours. In each group of the isolated lungs, reperfusion was carried out with Krebs-Hensleit-diluted human blood for 60 minutes. As parameters of the state of the isolated lung, peak inspiratory and pulmonary arterial pressures were continuously recorded. Oxygen and carbon dioxide tension of reperfusing blood were measured before and after 30, 60 minutes of reperfusion. After sixty minutes of reperfusion, protein content in bronchoalveolar lavage fluid was measured also for the evaluation of the degree of alveolar flooding. Lung myeloperoxidase activity was determined to verify the accumulation of neutrophils. Results: Although statistically significant differences were not noted in peak inspiratory and pulmonary arterial pressure between control and nitroglycerin group, latter group showed lowering tendency of pulmonary arterial pressure during the entire reperfusion period. Oxygen tension was higher (p<0.05) in nitroglycerin group compared with that of the control group, in contrast, there were no differences in carbon dioxide tension, protein content in bronchoalveolar lavage fluid and myeloperoxidase activity between the groups. In the examination of ultrastructural changes, nitroglycerin denoted the protective effect on the pulmonary architecture compared with that of control group. Conclusion: Collectively, on the bases of these experimental results, prior treatment of donor lung with nitroglycerin could result in better preservation of the lung. Consequently, these nitroglycerin preserved lungs are thought to be more suitable for successful transplantation of the lung.

Protective Effect of Antioxidants on the Reoxygenation Injury in Hypoxic Myocardium of Rat (저산소 심장의 산소 재공급에 따른 심근 손상에 있어서 항산화제의 보호 효과)

  • Yoon, Hyung-Ku;Lim, Jung-Kyoo;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.53-61
    • /
    • 1988
  • The effect of antioxidants on the myocardial cellular damage which occurs during reoxygenation of hypoxic myocardium was examined in isolated rat hearts. The roles of oxygen free radical and lipid peroxidation in reoxygenation injury of myocardium were also investigated. In Langenorff preparation of isolated rat heart, which was made hypoxic by perfusion with the substrate free, hypoxic cardioplegic solution ($37^{\circ}C$, 90 min), the release of cytosolic enzymes (creatine phosphokinase, lactic dehydrogenase) and a lipid peroxidation product, malondialdehyde into the coronary effluent were abruptly increased by reoxygenation. The release of enzymes was closely parallel to that of MDA. These increases of enzymes and lipid peroxidation product were suppressed to various degrees in the presence of scavengers of superoxide anion (superoxide dismutase, 10,000 U), hydrogen peroxide (catalase, 25,000 U) and hydroxyl radical (dimethyl sulfoxide, 10%). A natural antioxidant, ${\alpha}-tocopherol$(4.5 uM) and a synthetic one, butylated hydroxytoluene (2 uM) suppressed the release of cytosolic enzymes with the concomittent reduction of lipid peroxidation as measured by malondialdehyde release into the coronary effluent. These effects of antioxidants were dose dependent, and were more pronounced when the antioxidants were administered throughout hypoxic and reoxygenation periods than given during reoxygenation period only. These results suggest that cytotoxic oxygen free radicals produced in the myocardium during reoxygenation may be responsible fur the myocardial cellular injury by enhancing the lipid peroxidation of cellular membranes. Furthermore, the antioxidants may exert protective effect against reoxygenation damage of hypoxic myocardium through the inhibition of lipid peroxidation reaction.

  • PDF

Effect of Global Ischemic Preconditioning After Cardioplegic Arrest -Langendorff Isolated Heart Study- (단기간의 심근허혈이 심근보호에 미치는 영향 -적출 쥐 심장의 연구-)

  • Cheon, Young-Jin;Lee, In-Sung;Kim, Yeon-Soo;Choi, Young-Ho;Kim, Kwang-Taik;Kim, Hyoung-Mook;Kim, Hark-Jei;Lee, Gun
    • Journal of Chest Surgery
    • /
    • v.31 no.2
    • /
    • pp.95-101
    • /
    • 1998
  • Ischemic preconditioning is known to have protective effect on myocardial function at prolonged ischemic insult but the mechanism of the effect is not clearly known. The effect of the preconditioning on the global ischemia using cardioplegic solution is not well known. To evaluate the effect of global myocardial preconditioning on the functional recovery after cardioplegic arrest and two hours of hypothermic storage, we used the isolated rat heart and two hours cardioplegic arrest time at $0^{\circ}C$. In the experimental group(n=10), after baseline functional data was obtained, ischemic preconditioning was induced with 1 min of global normothermic ischemia for three times before the arrest period. In the control group(n=10), hearts underwent no ischemic precondi- tioning. After 2 hrs of cardioplegic arrest and storage in the $0^{\circ}C$ cardioplegic solution reperfusion was done and hemodynamic data were collected at post-reperfusion 20 min. Heart with ischemic preconditioning showed improved functional recovery at post reperfusion 20 min in peak developed pressure and dP/dT. In percent change of the peak pressure, preconditioning group showed 93.20$\pm$15.7% recovery rate compared to baseline data, and control group showed 67.3$\pm$15.6% recovery rate. In percent change of the dP/dT, control group showed 54.7$\pm$18.2% recovery rate and preconditioning group showed 78.1$\pm$15.1% recovery rate. Percent changes in heart rate and coronary flow showed no significant difference between two groups and there was no significant differences in amount of cardioplegic delivery between groups. Our data suggest ischemic preconditioning may have protective effect on recovery state after cardioplegic arrest and 2 hr ischemic storage of isolated rat heart and its mechanism is not related to the amount of the cardioplegic delivery amount.

  • PDF

Lung Preservation Study for Above 20 Hours of LPDG Solution in Canine Lung Allotransplactation (폐이식 실험견에서 LPDG용액을 이용한 20시간 이상 폐보존효과 관찰)

  • Park, Chang-Gwon;Gwon, Geon-Yeong;Yu, Yeong-Seon
    • Journal of Chest Surgery
    • /
    • v.30 no.10
    • /
    • pp.949-960
    • /
    • 1997
  • Background. Limited ischemic tolerance of the lung has remained one of the factors that limits the expansion of pulmonary transplantation as a treatment for end-stage pulmonary disease. Numerous studies on safe long term preservation for lung transplantation has been performed for the purpose of developing ideal preservation solution with extracellular type or intracellular type solutions. In this. study, we examined the efficacy of L DG solution in lung preservation longer than 20 hours by comparison with modified Euro-Collins solution. Iwethods. Thirty-(our adult mongrel dogs were divided into two groups. Donor lungs were flushed with LPDG solution(n=9) or modified Euro-Collins(MEC) solution(n=8) and stored for 24 hours at 1$0^{\circ}C$. All donor lungs were perfused through the pulmonary arteries with solutions containing prostaglandin El and verapamil. Left canine lung allotransplantations wereperformed. Assessment(hemodynamic indices and arterial blood gas analysis) of left implanted lung was made by occluding the right pulmonary artery for ten minutes using pulmonary artery Cuff. Assessment was repeated at the interval of 30 minutes, one hour, and two hours later after reperfusion and then chest X-ray, computed tomogram and lung perfusion scan were obtained. In survival dogs follow-up studies were done with assessment with chest X-ray, computed tomogram of the chest and lung perfusion scan on 7th day postoperatively. After preservation above 20 hours, pathological examinations for ultrastructural findings on right lung were performed in each group. Results. With respect to arterial oxygen tension, LPDG group was superior to MEC but there was no statistical significance for 2 hours after reperfusion. Mean pulmonary artery pressure was less increased(p < 0.05) and cardiac output higher(p <0.05) than MEC group until 2 hours after reperfusion. After 2 hours of reperfusion, both groups showed transplanted lung function deteriorated gradually. Perfusion scan of the transplanted lung in LPDG group showed better perfusion rate in immediate post-reperfusion, 3 days and 7 days later respectively but there was no statistical significance and corelation with PaO2 and computed tomoRravhic views. In scanning electron microscopy of pulmonary artery after preservation, LPDG group relatively shows less irregular protrusion of the inner surface of endothelial cell of poulmonary artery than MEC group. Conclusions, e concluded that LPDG solution can offer safe lung preservation above 20 hours with adequate immunosuppressive therapy and prevention of the infection.

  • PDF