• Title/Summary/Keyword: 재결정률

Search Result 16, Processing Time 0.02 seconds

The High Temperature Deformation Behavior of Mechanically (기계적 합금화된 Al-8wt% Fe분말의 고온 변형거동)

  • Jo, Gwon-Gu;Lee, Do-In;An, In-Seop;Heo, Bo-Yeong;Jo, Jong-Chun;Kim, Seon-Jin;Mun, In-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.50-57
    • /
    • 1993
  • Abstract The sintering behavior of the mechanically alloyed AI-8wt%Fe power during vacuum hot pressing was investigated and high temperature deformation behavior of the sintered specimen was studied through compression tests at various strain rates in the temperature range between 35$0^{\circ}C$ and 45$0^{\circ}C$. In 'addition, thermal stablity of the sintered specimem was examined by hardness measurement after annealing the spcimem for 60 hours in the temperature range of 30$0^{\circ}C$ ~50$0^{\circ}C$. The compressive stress increased rapidly with strain and reached the maximum point at the strain about 3%. With slight decrement after reaching the maximum point, the flow stress became constant up to the strain of 30% and it was considered to be due to equilibrium between work hardening and dynamic recrystallization. The hardness of the 60 hrs annealed specimens began to decrease rapidly at 40$0^{\circ}C$ .

  • PDF

Mechanical Properties and Microstructural Analysis of Sn-40Bi-X Alloys (Sn-40Bi-X 합금의 기계적 물성과 미세조직 분석)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Hyun, Chang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.79-79
    • /
    • 2010
  • 저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점: $138^{\circ}C$) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여 $10^{-2}$, $10^{-3}$, $10^{-4}\;s^{-1}$의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나, $10^{-2}\;s^{-1}$의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커 $10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나, $10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는 $\beta$-Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다.

  • PDF

Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates (변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향)

  • Lee, Sang-In;Lim, Hyeon-Seok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.535-541
    • /
    • 2016
  • The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.

The Improved Deblocking Filter for Low-bit Rate H.264/AVC Video (저해상도 H.264/AVC 비디오를 위한 개선된 디블럭킹 필터)

  • Kwon, Dong-Jin;Ryu, Sung-Pil;Kwak, Nae-Joung;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.284-289
    • /
    • 2008
  • H.264/AVC among moving picture compression standard is the standard format for high compression rate and reliable video transimission. It generates blocking effects in video due to compressing video using block-based DCT and includes de-blocking filter to reduce blocking effect. Therefore, the filter makes the video over-smoothing and the quality of it is reduced. In this paper, we propose a improved de-blocking filter to solve the demerit. The proposed de-blocking filter redetermine the block boundary strength and apply the comer filtering to eliminate artifacts in low frequency domain. To evaluate the performance, we apply the proposed deblocking filter and exiting method to various video and evaluated the quality of image subjectively and objectively by analyzing the result. The simulation result shows the proposed method preserves the edge of video, reduces blocking effects and improves PSNR than the existing method.

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

Mineralogical Study on Interpretation of Firing Temperature of Ancient Bricks: Focused on the Bricks from the Songsanri Tomb Complex (고대 벽돌의 소성온도 해석을 위한 광물학적 연구: 송산리 고분군 벽돌을 중심으로)

  • Jang, Sungyoon;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.395-407
    • /
    • 2014
  • In this study, firing temperature of bricks from the Songsanri tomb complex is interpreted based on the mineralogical and physical changes of soil samples fired at different temperature. When soil samples were burned at 500 to $1,200^{\circ}C$, phase transition of clay minerals affected the mineralogical composition and microstructure, which leaded to alteration of physical features as color, water absorption and porosity. Mineralogical composition can be assumed to vary with the temperature by mineral phase stability, however, color, water absorption, porosity and microstructure had slow change under $1,000^{\circ}C$, and had rapid change from 1,000 to $1,200^{\circ}C$. Upon the mineral and physical alteration of soil, firing temperature of bricks from the Songsanri tomb complex were estimated. Some bricks were over fired at temperature more than $1,200^{\circ}C$, some high-burned bricks were fired from 1,100 to $1,200^{\circ}C$, some bricks were fired by 900 to $1,000^{\circ}C$ and some bricks ere assumed not to be fired. Henceforward mineralogical and physical study can be applied to interpretate more precise firing temperature.