• Title/Summary/Keyword: 장기 체공 비행

Search Result 27, Processing Time 0.018 seconds

A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays (HALE 무인기의 태양전지 열특성에 관한 해석적 연구)

  • Song, Ji-Han;Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, a numerical analysis is made of the fluid flow and heat transfer characteristics in the solar arrays of HALE (High Altitude Lond Endurance) UAV. In the stratosphere where UAV operates, high level solar radiation is induced, heat transfer decreases due to natural convection and forced convection is dominated by ambient flow. In order to predict the solar array temperature range in this environment condition, the conjugate heat transfer analysis was carried out for the solar arrays on the main wing. The investigation focused on the temperature distribution of solar array and heat transfer characteristics according to influence of solar energy, flight condition as vehicle speed, air density, temperature.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

Development and Flight Test of a Small Solar Powered UAV (소형 태양광 무인항공기의 개발 및 비행시험)

  • Ahn, Il-Young;Bae, Jae-Sung;Park, SangHyuk;Yang, Yong-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.908-914
    • /
    • 2013
  • This study has developed a small solar powered UAV and performed its flight tests. In daylight, a solar powered UAV flies by using some of electricity generated from solar cells, and stores the remainder into battery. At night it flies by using electricity from battery. A solar powered UAV should have aerodynamically efficient configurations, light-weight, strong wing and fuselage. Its electric propulsion system and solar power system should also be very efficient. In the present study the solar powered UAV and its solar power system are developed for 12 hour continuous flight and the flight tests are performed to verify its performance. The flight tests performed in fall and winter to prove the present solar powered UAV is successful in four-season 12 hour flight.

Static Aerodynamics-Structure Coupling Analysis of a 3D Flexible Wing Flying at Low Speed (저속 비행 3차원 유연날개 정적 공력-구조 연계해석)

  • Han, Hyungseok;Park, Joohee;Lee, Nawon;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • 태양광 고고도 장기체공형 무인기나 인간동력 항공기 등에 사용되는 높은 종횡비를 가진 유연날개는 공력 및 구조 상호작용으로 인하여, 구조적 비선형 처짐 및 양력감소 등의 문제가 발생한다. 본 연구에서는 저속 비행하는 높은 종횡비를 가진 날개의 단방향 공력-구조 연계해석을 수행하였다. XFOIL을 사용하여 공력천이현상을 포함한 저 레이놀즈수 익형 공력특성 자료 확보를 기반으로 3차원 양력선 이론을 사용하여 공력해석 연구를 수행했다. 구조해석은 상용소프트웨어 ANSYS를 사용하여 구조변형이나 응력해석 연구를 수행했다. 단방향 공력-구조 연계해석 결과를 바탕으로 인간동력 항공기 주 날개의 형상설계 연구를 수행했다.

A Sizing Method for Solar Power Long Endurance UAVs (태양에너지 기반 장기체공 무인기 주요 치수 결정 방법론)

  • Lee, Ju-Ho;Lee, Chang-Gwan;Lim, Se-Sil;Kim, Keum-Seong;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.758-766
    • /
    • 2010
  • The design procedure of Solar Power UAVs is complicated because the configuration and required power for flight must be considered simultaneously as the supplied power is influenced by the wing area. In order to minimize trial and error for the Solar Power UAVs design, a systematic sizing method is proposed which can be used to determine whether a Solar Power UAV is feasible for a given mission, and to derive preliminary dimensional specification of it. The sizing procedure begins with initially assumed wing area because the power, lift, and drag of the wing are directly proportional to it. The assumed wing area and mission requirements are then used to determine step by step the airfoil specifications including lift coefficient and drag coefficient, weight, required power, and wing area. This procedure is iterated for each newly assumed wing area until the error between the assumed wing area and calculated wing area becomes significantly small enough. This sizing methodology was applied to previously developed Solar Power UAVs for validation purposes, resulting in good agreement. The methodology was also applied to determine the dimensions and specifications of the Solar Power High-Altitude Long-Endurance UAV.

Development of Hybrid Propulsion System and Ground Verification Test for Solar-powered UAV (태양광 기반 UAV의 복합추진시스템 개발 및 지상통합시험)

  • Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.133-140
    • /
    • 2018
  • Recently, environmentally friendly aviation propulsion systems have received a lot of attention. Therefore, many studies have been conducted on the development of UAVs and propulsion systems that can perform missions while relying on a combination of various power sources. In this paper, we show the design results of a hybrid propulsion system based on solar-power generation. It integrates a single system to test reliability and performance. Finally, a verification test is conducted on the aircraft to confirm the function and normal operation of the system before a flight test.

COMPARISON OF COMMERCIAL AND OPEN SOURCE CFD CODES FOR AERODYNAMIC ANALYSIS OF FLIGHT VEHICLES AT LOW SPEEDS (저속 비행체 공력해석을 위한 상용 및 오픈 소스 CFD 코드 비교)

  • Park, D.H.;Kim, C.W.;Lee, Y.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.70-80
    • /
    • 2016
  • The comparison of two commercial codes(FLUENT and STAR-CCM+) and an open-source code(OpenFOAM) are carried out for the aerodynamic analysis of flight vehicles at low speeds. Tailless blended-wing-body UCAV, main wing and propeller of HALE UAV(EAV-3) are chosen as geometries for the investigation. Using the same mesh, incompressible flow simulations are carried out and the results from three different codes are compared. In the linear region, the maximum difference of lift and drag coefficients of UCAV are found to be less than 2% and 5 counts, respectively and shows good agreement with wind tunnel test data. In a stall region, however, the reliability of RANS simulation is found to become poor and the uncertainty according to code also increases. The effect of turbulence models and meshes generated from different tools are also examined. The transition model yields better results in terms of drag which are much closer to the test data. The pitching moment is confirmed to be sensitive to the existence and the location of transition. For the case of EAV-3 wing, the difference of results with ${\kappa}-{\omega}$ SST model is increased when Reynolds number becomes low. The results for the propeller show good agreement within 1% difference of thrust. The reliability and uncertainty of three codes is found to be reasonable for the purpose of engineering use. However, the physical validity and reliability of results seem to be carefully examined when ${\kappa}-{\omega}$ SST model is used for aerodynamic simulation at low speeds or low Reynolds number conditions.